Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1629–1633 | Cite as

Growth and Optical Characterization of Europium and Cerium Doped KCl Single Crystals by Czochralski Method for Dosimetric Applications

  • D. N. KrishnakumarEmail author
  • Narayana Perumal Rajesh
Article
  • 23 Downloads

Abstract

Rare-earth-doped alkali halide single crystals KCl:Eu, KCl:Ce, and KCl:Eu,Ce were grown from melt using the Czochralski technique, and optical characterization was carried out with the prime focus on dosimetric applications. The grown crystals were investigated using XRD analysis, PL analysis, TSL measurements, and OSL measurements. The XRD of the crystals matched well with ICDD patterns (00-041-1476), and diffraction peaks can be assigned to the KCl structure, indicating that all the crystals have the same structure as KCl. The enhanced intensity of TSL and OSL was observed for co-doping of (Eu, Ce) in KCl crystals as compared to single doping. The appearance of a single glow peak in KCl:Eu,Ce at 230°C compared to single-doped KCl:Ce crystals suggested the use of the material in TL dosimetry. The intensity of OSL also showed a two-fold increase compared to single-doped crystals, suggesting its use in OSL dosimetry. PL studies showed a very high enhancement of intensity in Eu2+ emissions, reaching a maximum of about 421 nm in the (Eu2+, Ce3+) co-doped crystal compared to single-doped crystals. This justifies the occurrence of energy transfer from Ce3+ to Eu2+ in the KCl host lattice. These results showed that KCl:Eu,Ce acts as a potential TL and OSL dosimeter due to its high sensitivity to ionizing radiation.

Keywords

Single crystal crystal growth Czochralski method optical characterization potassium chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Nanto, K. Murayama, T. Usuda, F. Endo, Y. Hirai, S. Taniguchi, and N. Takeuchi, J. Appl. Phys. 74, 1445 (1993).CrossRefGoogle Scholar
  2. 2.
    J.P. Driewer, Med. Phys. 38, 4681 (2011).CrossRefGoogle Scholar
  3. 3.
    D. Joseph Daniel, P. Ramasamy, U. Madhusoodanan, and G. Bhagavannarayana, J. Cryst. Growth 353, 95 (2012).CrossRefGoogle Scholar
  4. 4.
    Y.W. Tan and C.S. Shi, J. Solid State Chem. 150, 178 (2000).CrossRefGoogle Scholar
  5. 5.
    N. Salah and P.D. Sahare, Radiat. Meas. 41, 665 (2006).CrossRefGoogle Scholar
  6. 6.
    R.A. Rodriguez, E. DelaRosa, L.A. Diaz-Torres, P. Salas, R. Melendrez, and M. Barboza-Flores, Opt. Mater. 27, 293 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Bangaru and G. Muralidharan, Physica B 407, 2185 (2012).CrossRefGoogle Scholar
  8. 8.
    O.J. Rubio, J. Phys. Chem. Solids 52, 101 (1991).CrossRefGoogle Scholar
  9. 9.
    C. Vijayan and Y.V.G.S. Murti, Cryst. Lattice Defects Amorphous Mater. 18, 431 (1989).Google Scholar
  10. 10.
    F. Samavat, E. Haji Ali, S. Solgi, and P. Taravati Ahmad, Open J. Phys. Chem. 2, 185 (2012).CrossRefGoogle Scholar
  11. 11.
    H. Nanto, K. Murayama, T. Usuda, S. Taniguchi, and N. Takeuchi, Radiat. Prot. Dosim. 47, 281 (1993).CrossRefGoogle Scholar
  12. 12.
    I. Aguirre de Cárcer, H.L. D’Antoni, M. Barboza-Flores, V. Correcher, and F. Jaque, J. Rare Earths 27, 579 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Nagaoka and S. Adachi, ECS J. Solid State Sci. Technol. 3, 43 (2015).CrossRefGoogle Scholar
  14. 14.
    Y. Tosaka and S. Adachi, J. Lumin. 156, 157 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. Tosaka and S. Adachi, ECS J. Solid State Sci. Technol. 3, 14 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Hashima, M. Koshimizu, and K. Asai, Radiat. Phys. Chem. 78, 1038 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Nagarajan and R. Sudarkodi, J. Alloys Compd. 468, 558 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Lei, Q. Zou, and D. Dehai, Appl. Phys. A 97, 635 (2009).CrossRefGoogle Scholar
  19. 19.
    E. Mandowska, R. Majgier, and A. Mandowski, Appl. Radiat. Isot. 129, 171 (2017).CrossRefGoogle Scholar
  20. 20.
    A.T. Davidson, A.G. Kozakiewicz, T.E. Derry, J.D. Comins, and M. Suszynska, Nucl. Instrum. Methods Phys. Res. Sect. B 218, 249 (2004).CrossRefGoogle Scholar
  21. 21.
    P. Dewangan, D.P. Bisen, N. Brahme, R.K. Tamrakar, K. Upadhyay, S. Sharma, and I.P. Sahu, J. Alloys Compd. 735, 1383 (2018).CrossRefGoogle Scholar
  22. 22.
    A. Saidua, H. Wagirana, M.A. Saeeda, H.K. Obayesa, A. Balab, and F. Usmane, Radiat. Phys. Chem. 144, 413 (2018).CrossRefGoogle Scholar
  23. 23.
    D. Joseph Daniel, P. Ramasamy, and U. Madhusoodanan, Optik 124, 1466 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Bangaru, Physica B 406, 159 (2011).CrossRefGoogle Scholar
  25. 25.
    S.W.S. McKeever, Radiat. Meas. 46, 1336 (2011).CrossRefGoogle Scholar
  26. 26.
    P.K. Bandyopadhyay, G.W. Russell, and K. Chakrabarti, Radiat. Meas. 30, 51 (1999).CrossRefGoogle Scholar
  27. 27.
    M. Agarwal, S.K. Garg, K. Asokan, D. Kanjilal, and P. Kumar, RSC Adv. 7, 13836 (2017).CrossRefGoogle Scholar
  28. 28.
    W. Shen, Y. Zhu, and Z. Wang, Luminescence 30, 1409 (2015).CrossRefGoogle Scholar
  29. 29.
    F. Zhang and W. Tang, Luminescence 30, 216 (2015).CrossRefGoogle Scholar
  30. 30.
    H. Qingsong, L. Wang, Z. Huang, and Z. Fang, Ceram. Interfaces 41, 8988 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Centre for Radiation, Environmental Science and Technology (SSN-CREST)SSN College of EngineeringKalavakkam, ChennaiIndia

Personalised recommendations