Skip to main content
Log in

No-Clean Solder Flux Chemistry and Temperature Effects on Humidity-Related Reliability of Electronics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of no-clean flux technology for the wave soldering process of a printed circuit board assembly (PCBA) influences the humidity-related robustness of the electronic devices due to the ionic residues remaining on the PCBA surface after soldering. This paper investigates the effect of various no-clean solder flux chemistries on the formation of a water layer on the PCBA surface studied as a function of climatic conditions relevant for the electronics industry. The activating part of the commercial flux formulations used for the investigations was based on single weak organic acid (WOA) and WOA mixtures. The hygroscopic nature of flux residues, reflecting their ability to uptake moisture and lead to water film build-up, was investigated using the gravimetric moisture sorption test and AC electrochemical impedance. The effect of flux composition and ambient climatic conditions on the corrosion reliability was studied using DC leakage current measurements upon varying potential bias, humidity, and temperature levels. The study shows that solder flux residues containing a mixture of WOA activators in their formulation facilitate the formation of water layer on the PCBA surface at lower humidity levels, compared to the residues composed of a single activator, and absorb a higher amount of moisture. Corrosion occurrence is accelerated by the presence of highly hygroscopic residues of WOA mixtures, compared to significantly less corrosive contaminants comprised of single activator. Increasing ambient temperature enhances moisture interaction with flux residues and changes its deliquescent behaviour, leading to the formation of a thicker water layer and severe ion-induced corrosion at lower humidity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Tautscher, Contamination Effects on Electronic Products (New York: CRC Press, 1991).

    Google Scholar 

  2. U. Rathinavelu, Ph.D. Thesis (2011).

  3. V. Verdingovas, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 27, 4 (2015).

    Article  Google Scholar 

  4. R. Michalkiewicz and S.M.T. Surf, Mt. Technol. Mag. 29, 1 (2014).

    Google Scholar 

  5. K. Piotrowska, R. Ud Din, F.B. Grumsen, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 47, 7 (2018).

    Article  Google Scholar 

  6. V. Verdingovas, M.S. Jellesen, and R. Ambat, IEEE Trans. Device Mater. Reliab. 14, 1 (2014).

    Article  Google Scholar 

  7. D. Pauls, Circuit World 27, 1 (2001).

    Article  Google Scholar 

  8. L.D. Angelo, V. Verdingovas, and L. Ferrero, in Proceedings of the European Corrosion Congress EUROCORR (2016).

  9. F. Cirolia and C. Finan, in Apec 2001: Sixteenth Annual Ieee Applied Power Electronics Conference and Exposition, vol 1–2 (2001), pp. 238–242.

  10. J.R. White, IBM J. Res. Dev. 37, 2 (1993).

    Article  Google Scholar 

  11. V. Verdingovas, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 44, 4 (2015).

    Article  Google Scholar 

  12. K. Piotrowska, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 29, 3 (2017).

    Article  Google Scholar 

  13. J.H. Lau, Solder Joint Reliability: Theory and Applications (Berlin: Springer, 1991).

    Book  Google Scholar 

  14. P. Biocca, in Proceedings of SMTA International (2001), pp. 72–75.

  15. S. Zhan, M.H. Azarian, and M.G. Pecht, in Proceedings2005 International Symposium on Microelectronics, Imaps 2005 (2005), pp. 367–375.

  16. R. Ambat, M.S. Jellesen, D. Minzari, U. Rathinavelu, M.A.K. Johnsen, P. Westermann, and P. Møller, in Proceedings of the European Corrosion Congress EUROCORR (2009).

  17. K. Piotrowska, H. Conseil, M.S. Jellesen, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2014), paper no. 7495.

  18. V. Verdingovas, M.S. Jellesen, R. Rizzo, H. Conseil, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2013).

  19. K. Piotrowska, V. Verdingovas, and R. Ambat, J. Mater. Sci. Mater. Electron. 29, 20 (2018).

    Article  Google Scholar 

  20. P.-E. Tegehall, in ELFNET B. Fail. Mech. Test. Methods, Qual. Issues Lead-Free Solder Interconnects (Springer, London, 2011), pp. 283–296.

  21. C. Dominkovics and G. Harsanyi, in 29th International Spring Seminar on Electronics Technology: Nano Technologies for Electronics Packaging (2007), pp. 206–210.

  22. U. Rathinavelu, M.S. Jellesen, P. Møller, R. Ambat, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 2, 4 (2012).

    Article  Google Scholar 

  23. K.S. Hansen, M.S. Jellesen, P. Møller, P.J.S. Westermann, and R. Ambat, in Annual Reliability and Maintainability Symposium, 2009. Rams 2009 (2009), p. 4914727.

  24. M.S. Jellesen, M. Dutta, V. Verdingovas, and R. Ambat, in Imaps Nordic Annual Conference Proceedings (2012), pp. 104–113.

  25. R. Ambat, in Imaps Nordic Annual Conference Proceedings 2012 (2012), pp. 1–18.

  26. L. Zou and C. Hunt, Solder. Surf. Mt. Technol. 11, 2 (1999).

    Google Scholar 

  27. J.E. Sohn and U. Ray, Circuit World 21, 4 (1995).

    Article  Google Scholar 

  28. J.A. Jachim, G.B. Freeman, and L.J. Turbini, IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 4 (1997).

    Article  Google Scholar 

  29. L.J. Turbini, J.A. Jachim, G.B. Freeman, and J.F. Lane, in Proceedings of 1992 13th IEEE/CHMT International Electronic Manufacturing Symposium (1992), pp. 80–84.

  30. K.G. Schmitt-Thomas and C. Schmidt, Solder. Surf. Mt. Technol. 3, 18 (1994).

    Google Scholar 

  31. H.E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem. 62, 7512 (1997).

    Article  Google Scholar 

  32. J.T. Carstensen, Pharmaceutical Principles of Solid Dosage Forms (Lancaster: Technomic Pub, 1993).

    Google Scholar 

  33. L. Ma, B. Sood, and M. Pecht, IEEE Trans. Device Mater. Reliab. 11, 1 (2011).

    Article  Google Scholar 

  34. T. Mitra, G. Sailakshmi, A. Gnanamani, and A.B. Mandal, Mater. Res. 16, 4 (2013).

    Article  Google Scholar 

  35. R.M. Silverstein, F.X. Webster and D.J. Kiemle The Spectrometric Identification of Organic Compounds, 7th ed. (New York, NY: John Wiley & Sons, 2005).

  36. L.J. Mauer and L.S. Taylor, Pharm. Dev. Technol. 15, 6 (2010).

    Article  Google Scholar 

  37. G. Zografi and B. Hancock, in Topics in Pharmaceutical Sciences, eds. by D.J.A. Crommelin, K.K. Midha, T. Nagai (Medpharm Scientific Publishers, Stuttgart, 1993), pp. 405–419.

  38. M. Kuwata, W. Shao, R. Lebouteiller, and S.T. Martin, Atmos. Chem. Phys. 13, 10 (2013).

    Article  Google Scholar 

  39. M.C. Allan, M.Sc. Thesis (2014).

  40. L.J. Mauer and M. Allan, Manuf. Confect. 95, 73 (2015).

    Google Scholar 

  41. K. Kwok, L.J. Mauer, and L.S. Taylor, J. Agric. Food Chem. 58, 22 (2010).

    Article  Google Scholar 

  42. A.K. Salameh, L.J. Mauer, and L.S. Taylor, J. Food Sci. 71, 1 (2006).

    Article  Google Scholar 

  43. M. Tencer, in 44th Electronic Components and Technology Conference Proceedings (1994), pp. 196–209.

  44. L.J. Mauer and L.S. Taylor, Annu. Rev. Food Sci. Technol. 1, 1 (2010).

    Article  Google Scholar 

  45. S.T. Martin, Chem. Rev. 100, 9 (2000).

    Article  Google Scholar 

  46. J.G. Kapsalis, Water Activity: Theory and Applications to Food (New York: Marcel Dekker Inc, 1987), pp. 173–213.

    Google Scholar 

  47. L. D’Angelo, V. Verdingovas, L. Ferrero, E. Bolzacchini, and R. Ambat, IEEE Tans. Device Mater. Reliab. 17, 4 (2017).

    Article  Google Scholar 

  48. L. Treuel, S. Schulze, T. Leisner, and R. Zellner, Faraday Discuss. 137, 265 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

The research reported here was conducted as part of the CELCORR/CreCon consortium (www.celcorr.com) and supported by the Innovation Fund Denmark through the IN SPE project. The authors would like to acknowledge the industrial partners for funding support, their help and commitment received during the program run. Magdalena Grzelak is Adam Mickiewicz University Foundation scholarship holder in 2018/2019 academic year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Piotrowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piotrowska, K., Grzelak, M. & Ambat, R. No-Clean Solder Flux Chemistry and Temperature Effects on Humidity-Related Reliability of Electronics. J. Electron. Mater. 48, 1207–1222 (2019). https://doi.org/10.1007/s11664-018-06862-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06862-4

Keywords

Navigation