Skip to main content
Log in

Thermoelectric Properties of Zn4Sb3 Composites with Incomplete Reaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zn4Sb3 composites have been prepared by plasma-activated sintering (PAS) using mixtures of Zn and Sb. Small amounts of ZnSb and Zn were found as impurity phases. Scanning electron microscopy revealed that metallic Zn was present along the particle boundaries. A sudden decline in the thermal conductivity was found at ∼ 600 K. However, this phenomenon disappeared after the application of heat treatment for 4 h. Further studies confirmed that this decline in the thermal conductivity is related to the reaction between ZnSb and Zn. The dynamic change in the structure during the reaction reduced the thermal conductivity and improved the thermoelectric performance of the Zn4Sb3 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  2. C. Chang, W. Minghui, D. He, Y. Pei, W. Chao-Feng, W. Xuefeng, Yu Hulei, F. Zhu, K. Wang, and Y. Chen, Science 360, 778 (2018).

    Article  Google Scholar 

  3. J.S. Rhyee, K. Ahn, K.H. Lee, H.S. Ji, and J.H. Shim, Adv. Mater. 23, 2191 (2011).

    Article  Google Scholar 

  4. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  5. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  6. Y. Liu, L.D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D.B. Liu, W. Xu, Y.H. Lin, and C.W. Nan, Adv. Energy Mater. 6, 1502423 (2016).

    Article  Google Scholar 

  7. B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, and A. Dhar, Nano Energy 13, 36 (2015).

    Article  Google Scholar 

  8. P. Qiu, M.T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S.M. Haile, W.G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen, and G.J. Snyder, Nat. Commun. 9, 2910 (2018).

    Article  Google Scholar 

  9. H.W. Mayer, I. Mikhail, and K. Schubert, J. Less-Common Metals 59, 43 (1978).

    Article  Google Scholar 

  10. J. Nylen, M. Andersson, S. Lidin, and U. Haussermann, J. Am. Chem. Soc. 126, 16306 (2004).

    Article  Google Scholar 

  11. Y. Mozharivskyj, Y. Janssen, J.L. Harringa, A. Kracher, A.O. Tsokol, and G.J. Miller, Chem. Mater. 18, 822 (2006).

    Article  Google Scholar 

  12. A.S. Mikhaylushkin, J. Nylen, and U. Haussermann, Chem. Eur. J. 11, 4912 (2005).

    Article  Google Scholar 

  13. Y. Mozharivskyj, A.O. Pecharsky, S. Bud’ko, and G.J. Miller, Chem. Mater. 16, 1580 (2004).

    Article  Google Scholar 

  14. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  Google Scholar 

  15. F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, C. Gatti, and B.B. Iversen, Chem. Eur. J. 10, 3861 (2004).

    Article  Google Scholar 

  16. J. Lin, X. Li, G. Qiao, Z. Wang, J. Carrete, Y. Ren, L. Ma, Y. Fei, B. Yang, L. Lei, and J. Li, J. Am. Chem. Soc. 136, 1497 (2014).

    Article  Google Scholar 

  17. W. Schweika, R.P. Hermann, M. Prager, J. Persson, and V. Keppens, Phys. Rev. Lett. 99, 125501 (2007).

    Article  Google Scholar 

  18. J. Lin, G. Qiao, L. Ma, Y. Ren, B. Yang, Y. Fei, and L. Lei, Appl. Phys. Lett. 102, 163902 (2013).

    Article  Google Scholar 

  19. H. Yin, M. Christensen, N. Lock, and B.B. Iversen, Appl. Phys. Lett. 101, 043901 (2012).

    Article  Google Scholar 

  20. K. Haruno, Y. Atsushi, I. Tsutomu, and O. Haruhiko, Appl. Phys. Express 10, 095801 (2017).

    Article  Google Scholar 

  21. V. Izard, M.C. Record, and J.C. Tedenac, J. Alloys Compd. 345, 257 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant No. 51602272), Natural Science Foundation of Fujian Province (Grant No. 2016J01745), and State Key Laboratory for Mechanical Behavior of Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Ma, L., Zheng, Z. et al. Thermoelectric Properties of Zn4Sb3 Composites with Incomplete Reaction. J. Electron. Mater. 48, 1159–1163 (2019). https://doi.org/10.1007/s11664-018-06851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06851-7

Keywords

Navigation