Skip to main content

Microstructural Investigation, Raman and Magnetic Studies on Chemically Synthesized Nanocrystalline Ni-Doped Gadolinium Oxide (Gd1.90Ni0.10O3−δ)

Abstract

Nanocrystalline Ni-doped gadolinium oxide (Gd1.90Ni0.10O3−δ, GNO) is synthesized by co-precipitation method. The as-prepared sample is annealed in vacuum at 700°C for 6 h. Analyses of the x-ray diffractogram by Rietveld refinement method, transmission electron microscopy and Raman spectroscopy of GNO recorded at room temperature confirmed the pure crystallographic phase and complete substitution of Ni-ions in Gd2O3 lattice. Magnetization (M) as a function of temperature (T) and magnetic field (H) is measured by a superconducting quantum interference device magnetometer, which suggests the presence of ferromagnetic/antiferromagnetic phases together with a paramagnetic phase. From the M–T curve it can be shown that the ferromagnetic phase dominates over para-/antiferromagnetic phases in the temperature range of 300–100 K, but from 100 K to 50 K, the antiferromagnetic phase dominates over ferro-/paramagnetic phases. Hysteresis loops recorded at different temperatures indicate the presence of weak ferro-/antiferromagnetism, which dominates in the low field region (∼ 4000 Oe), above which magnetization increases linearly. The sharp increase of magnetization in M–T curve observed in the temperature range of 50–5 K confirms the presence of dominating ferromagnetic plus paramagnetic phase over antiferromagnetic part. For the first time a combined formula generated from three-dimensional (3D) spin wave model and Johnston formula is proposed to analyze the coexistence of different magnetic phases in different temperature ranges. Interestingly, the combined formula successfully explains the co-existence of different magnetic phases along with their contribution at different temperatures. The onset of ferromagnetism in Gd1.90Ni0.10O3−δ is explained by oxygen vacancy mediated F-centre exchange (FCE) coupling mechanism.

References

  1. M. Venkateshan, C.B. Fitzgerald, and J.M.D. Coey, Nature 430, 630 (2004).

    Article  Google Scholar 

  2. H. Ohno, Science 281, 951 (1998).

    Article  Google Scholar 

  3. H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, and C.P. Liu, Appl. Phys. Lett. 88, 242507 (2006).

    Article  Google Scholar 

  4. H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. 80, 94 (2002).

    Article  Google Scholar 

  5. W.K. Park, R.J. Ortega-Hertogs, J.S. Moodera, A. Punnoose, and M.S. Seehra, J. Appl. Phys. 91, 8093 (2002).

    Article  Google Scholar 

  6. J. Chen, P. Rulis, L. Ouyang, S. Satpathy, and W.Y. Ching, Phys. Rev. B 74, 235207 (2006).

    Article  Google Scholar 

  7. R.K. Singhal, P. Kumari, S. Kumar, S.N. Dolia, Y.T. Xing, M. Alzamora, U.P. Deshpande, T. Shripathi, and E. Saitovitch, J. Phys. D Appl. Phys. 44, 165002 (2011).

    Article  Google Scholar 

  8. Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.Q. Song, and J.Q. Xiao, J. Mag. Mag. Mater. 321, 3110 (2009).

    Article  Google Scholar 

  9. M.C. Prestgard, G. Siegel, Q. Ma, and A. Tiwari, Appl. Phys. Lett. 103, 102409 (2013).

    Article  Google Scholar 

  10. J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  Google Scholar 

  11. I.Z. Mitrovic and S. Hall, J. Telecommun. Inf. Technol. 4, 51 (2009).

    Google Scholar 

  12. J.-G. Wan, Q. Lu, B. Chen, F. Song, J.-M. Liu, J. Dong, and G. Wang, Appl. Phys. Lett. 95, 152901 (2009).

    Article  Google Scholar 

  13. A. Bandyopadhyay, S. Sutradhar, B.J. Sarkar, A.K. Deb, and P.K. Chakrabarti, Appl. Phys. Lett. 100, 252411 (2012).

    Article  Google Scholar 

  14. A. Bandyopadhyay, A.K. Deb, S. Kobayashi, K. Yoshimura, and P.K. Chakrabarti, J. Alloys Compd. 611, 324 (2014).

    Article  Google Scholar 

  15. J. Mandal, B.J. Sarkar, A.K. Deb, and P.K. Chakrabarti, J. Mag. Mag. Mater. 371, 35 (2014).

    Article  Google Scholar 

  16. N.W. Gray and A. Tiwari, J. Appl. Phys. 110, 033903 (2011).

    Article  Google Scholar 

  17. B.J. Sarkar, A. Bandyopadhyay, J. Mandal, A.K. Deb, and P.K. Chakrabarti, J. Alloys Compd. 656, 339 (2016).

    Article  Google Scholar 

  18. B.J. Sarkar, A.K. Deb, and P.K. Chakrabarti, RSC Adv. 6, 6395 (2016).

    Article  Google Scholar 

  19. J. Mandal, M. Dalal, B.J. Sarkar, and P.K. Chakrabarti, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-5077-1.

    Google Scholar 

  20. R.M. Petoral Jr, F. Söderlind, A. Klasson, A. Suska, M.A. Fortin, N. Abrikossova, L. Selegård, P.O. Käll, M. Engström, and K. Uvdal, J. Phys. Chem. C 113, 6913 (2009).

    Article  Google Scholar 

  21. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).

    Article  Google Scholar 

  22. L. Lutterotti, MAUD, Version 2.046 (2006). http://www. ing.unitn.it/maud/.

  23. A. Bartos, K.P. Lieb, M. Uhrmacher, and D. Wiarda, Acta Crystallogr. B 49, 165 (1993).

    Article  Google Scholar 

  24. C.L. Luyer, A. Garcia-Murillo, E. Bernstein, and J. Mugnier, J. Raman Spectrosc. 34, 234 (2003).

    Article  Google Scholar 

  25. J. Zarembowitch, J. Gouteron, and A.M. Lejus, J. Raman Spectrosc. 9, 263 (1972).

    Article  Google Scholar 

  26. D. Bloor and J.R. Dean, J. Phys. C Solid State Phys. 5, 1237 (1972).

    Article  Google Scholar 

  27. A. Garcia-Murillo, C.L. Luyer, C. Garapon, C. Dujardin, E. Bernstein, C. Pedrini, and J. Mugnier, Opt. Mater. 19, 161 (2002).

    Article  Google Scholar 

  28. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, J. Phys: Conf. Ser. 93, 012039 (2007).

    Google Scholar 

  29. B. Santara, B. Pal, and P.K. Giri, J. Appl. Phys. 110, 114322 (2011).

    Article  Google Scholar 

  30. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, and Q. Chen, J. Phys. D Appl. Phys. 33, 912 (2000).

    Article  Google Scholar 

  31. D.C. Johnston, R.K. Kremer, M. Troyer, X. Wang, A. Klümper, S.L. Bud’ko, A.F. Panchula, and P.C. Canfield, Phys. Rev. B 61, 9558 (2000).

    Article  Google Scholar 

  32. S.K.S. Patel, P. Dhak, M.K. Kim, J.H. Lee, M. Kim, and S.K. Kim, J. Mag. Mag. Mater. 403, 155 (2016).

    Article  Google Scholar 

  33. D.L. Hou, X.J. Ye, X.Y. Zhao, H.J. Meng, H.J. Zhou, X.L. Li, and C.M. Zhen, J. Appl. Phys. 102, 033905 (2007).

    Article  Google Scholar 

  34. A.C. Durst, R.N. Bhatt, and P.A. Wolff, Phys. Rev. B 65, 235205 (2002).

    Article  Google Scholar 

  35. Q.Y. Wen, H.W. Zhang, Y.Q. Song, Q.H. Yang, H. Zhu, and J.Q. Xiao, J. Phys. Condens. Matter 19, 246205 (2007).

    Article  Google Scholar 

  36. G.W. Pratt Jr, Phys. Rev. 108, 1233 (1957).

    Article  Google Scholar 

  37. J.Z. Cai, L. Li, S. Wang, W.Q. Zou, X.S. Wu, and F.M. Zhang, Phys. B 424, 42 (2013).

    Article  Google Scholar 

  38. S. Chikazumi, Physics of Ferromagnetism (New York: Oxford University Press, 1997).

    Google Scholar 

  39. S. Hazarika, N. Paul, and D. Mohanta, Bull. Mater. Sci. 37, 789 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chakrabarti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B.J., Mandal, J., Dalal, M. et al. Microstructural Investigation, Raman and Magnetic Studies on Chemically Synthesized Nanocrystalline Ni-Doped Gadolinium Oxide (Gd1.90Ni0.10O3−δ). J. Electron. Mater. 47, 1768–1779 (2018). https://doi.org/10.1007/s11664-017-6048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6048-x

Keywords

  • Nanoparticle
  • chemical synthesis
  • magnetic materials
  • magnetic properties