Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

Abstract

This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F.W. Gayle, G. Becka, A. Syed, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, and I. Anderson, JOM 53, 17 (2001).

    Article  Google Scholar 

  2. 2.

    H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, and J. Cho, J. Electron. Mater. 38, 802 (2009).

    Article  Google Scholar 

  3. 3.

    M.M. El-Bahay, M.E. El Mossalamy, M. Mahdy, and A.A. Bahgat, Phys. Status Solidi A 198, 76 (2003).

    Article  Google Scholar 

  4. 4.

    E.K. Ohriner, Weld. J., 66, 191 (1987).

  5. 5.

    L. Snugovsky, D.D. Perovic, and J.W. Rutter, Mater. Sci. Technol. 20, 1049 (2004).

    Article  Google Scholar 

  6. 6.

    H. Ma, J.C. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, Electronic Components and Technology Conference, pp. 653–668 (2007).

  7. 7.

    S.L. Allen, M.R. Notis, R.R. Chromik, and R.P. Vinci, J. Mater. Res. 19, 1417 (2004).

    Article  Google Scholar 

  8. 8.

    S. Wiese and K.J. Wolter, Microelectron. Reliab. 47, 223 (2007).

    Article  Google Scholar 

  9. 9.

    M. Yang, M. Li, and C. Wang, Intermetallic 25, 86 (2012).

    Article  Google Scholar 

  10. 10.

    W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).

    Article  Google Scholar 

  11. 11.

    J.W. Yoon and S.B. Jung, J. Mater. Sci. 39, 4211 (2004).

    Article  Google Scholar 

  12. 12.

    P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).

    Article  Google Scholar 

  13. 13.

    M. Hasnine, M. Mustafa, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, Electronic Components and Technology Conference, pp. 166–178 (2013).

  14. 14.

    M. Hasnine, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, Electronic Components and Technology Conference, pp. 379–394 (2014).

  15. 15.

    M. Hasnine, J.C. Suhling, and M.J. Bozack, J. Mater. Sci. Mater. Electron. 28, 1 (2017).

  16. 16.

    E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    Article  Google Scholar 

  17. 17.

    H. Chen, J. Han, and M. Li, J. Electron. Mater. 40, 2470 (2011).

    Article  Google Scholar 

  18. 18.

    R. Sedláček, W. Blum, J. Kratochvil, and S. Forest, Metall. Mater. Trans. A 33, 319 (2002).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Hasnine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasnine, M., Tolla, B. & Vahora, N. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging. Journal of Elec Materi 47, 2488–2498 (2018). https://doi.org/10.1007/s11664-017-6042-3

Download citation

Keywords

  • High temperature solder
  • aging
  • micro-hardness
  • grain growth
  • microstructure
  • Sn-Sb
  • Sn-Ag