Advertisement

Journal of Electronic Materials

, Volume 47, Issue 4, pp 2488–2498 | Cite as

Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

  • M. Hasnine
  • B. Tolla
  • N. Vahora
Article
  • 92 Downloads

Abstract

This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

Keywords

High temperature solder aging micro-hardness grain growth microstructure Sn-Sb Sn-Ag 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.W. Gayle, G. Becka, A. Syed, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, and I. Anderson, JOM 53, 17 (2001).CrossRefGoogle Scholar
  2. 2.
    H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, and J. Cho, J. Electron. Mater. 38, 802 (2009).CrossRefGoogle Scholar
  3. 3.
    M.M. El-Bahay, M.E. El Mossalamy, M. Mahdy, and A.A. Bahgat, Phys. Status Solidi A 198, 76 (2003).CrossRefGoogle Scholar
  4. 4.
    E.K. Ohriner, Weld. J., 66, 191 (1987).Google Scholar
  5. 5.
    L. Snugovsky, D.D. Perovic, and J.W. Rutter, Mater. Sci. Technol. 20, 1049 (2004).CrossRefGoogle Scholar
  6. 6.
    H. Ma, J.C. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, Electronic Components and Technology Conference, pp. 653–668 (2007).Google Scholar
  7. 7.
    S.L. Allen, M.R. Notis, R.R. Chromik, and R.P. Vinci, J. Mater. Res. 19, 1417 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Wiese and K.J. Wolter, Microelectron. Reliab. 47, 223 (2007).CrossRefGoogle Scholar
  9. 9.
    M. Yang, M. Li, and C. Wang, Intermetallic 25, 86 (2012).CrossRefGoogle Scholar
  10. 10.
    W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).CrossRefGoogle Scholar
  11. 11.
    J.W. Yoon and S.B. Jung, J. Mater. Sci. 39, 4211 (2004).CrossRefGoogle Scholar
  12. 12.
    P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).CrossRefGoogle Scholar
  13. 13.
    M. Hasnine, M. Mustafa, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, Electronic Components and Technology Conference, pp. 166–178 (2013).Google Scholar
  14. 14.
    M. Hasnine, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, Electronic Components and Technology Conference, pp. 379–394 (2014).Google Scholar
  15. 15.
    M. Hasnine, J.C. Suhling, and M.J. Bozack, J. Mater. Sci. Mater. Electron. 28, 1 (2017).Google Scholar
  16. 16.
    E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).CrossRefGoogle Scholar
  17. 17.
    H. Chen, J. Han, and M. Li, J. Electron. Mater. 40, 2470 (2011).CrossRefGoogle Scholar
  18. 18.
    R. Sedláček, W. Blum, J. Kratochvil, and S. Forest, Metall. Mater. Trans. A 33, 319 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Kester IncItascaUSA
  2. 2.BuehlerLake BluffUSA

Personalised recommendations