Skip to main content
Log in

Enhanced Photocatalytic Activity of Two-Pot-Synthesized BiFeO3–ZnFe2O4 Heterojunction Nanocomposite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

BiFeO3–ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron–hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  2. T. Shen, C. Hu, H.L. Dai, W.L. Yang, H.C. Liu, and X.L. Wei, Mater. Res. Innov. 19, 684 (2015).

    Google Scholar 

  3. W. Ji, K. Yao, and Y.C. Liang, Adv. Mater. 22, 1763 (2010).

    Article  Google Scholar 

  4. S.-M. Lam, J.-C. Sin, and A.R. Mohamed, Mater. Res. Bull. 90, 30 (2017).

    Article  Google Scholar 

  5. Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature 414, 625 (2001).

    Article  Google Scholar 

  6. A. Zhu, Q. Zhao, X. Li, and Y. Shi, ACS Appl. Mater. Interfaces 6, 671 (2014).

    Article  Google Scholar 

  7. Z. Li, Y. Shen, Y. Guan, Y. Hu, Y. Lin, and C.-W. Nan, J. Mater. Chem. A 2, 1967 (2014).

    Article  Google Scholar 

  8. F. Niu, D. Chen, L. Qin, T. Gao, N. Zhang, S. Wang, Z. Chen, J. Wang, X. Sun, and Y. Huang, Sol. Energy Mater. Sol. Cells 143, 386 (2015).

    Article  Google Scholar 

  9. S.M. Masoudpanah, S.M. Mirkazemi, R. Bagheriyeh, F. Jabbari, and F. Bayat, Bull. Mater. Sci. 40, 93 (2017).

    Article  Google Scholar 

  10. J. Huang, G. Tan, W. Yang, L. Zhang, H. Ren, and A. Xia, Mater. Sci. Semicond. Process. 25, 84 (2014).

    Article  Google Scholar 

  11. T. Soltani and M.H. Entezari, Chem. Eng. J. 251, 207 (2014).

    Article  Google Scholar 

  12. T. Fan, C. Chen, and Z. Tang, RSC Adv. 6, 9994 (2016).

    Article  Google Scholar 

  13. H. Cheng, B. Huang, Y. Dai, X. Qin, and X. Zhang, Langmuir 26, 6618 (2010).

    Article  Google Scholar 

  14. J. Li, Z. Liu, and Z. Zhu, RSC Adv. 4, 51302 (2014).

    Article  Google Scholar 

  15. W. Chen, H. Ruan, Y. Hu, D. Li, Z. Chen, J. Xian, J. Chen, X. Fu, Y. Shaoa, and Y. Zheng, CrystEngComm 14, 6295 (2012).

    Article  Google Scholar 

  16. L. Zhang, Y. He, P. Ye, Y. Wu, and T. Wu, J. Alloys Compd. 549, 105 (2013).

    Article  Google Scholar 

  17. C.M. Raghavan, J.W. Kim, J.Y. Choi, T.K. Song, and S.S. Kim, Ceram. Int. 41, S303 (2015).

    Article  Google Scholar 

  18. J. Hu, Y. Xie, X. Zhou, and J. Yang, J. Alloys Compd. 676, 320 (2016).

    Article  Google Scholar 

  19. X. Wang, W. Mao, J. Zhang, Y. Han, C. Quan, Q. Zhang, T. Yang, J. Yang, X.A. Li, and W. Huang, J. Colloid Interface Sci. 448, 17 (2015).

    Article  Google Scholar 

  20. J. Kong, Z. Rui, X. Wang, H. Ji, and Y. Tong, Chem. Eng. J. 302, 552 (2016).

    Article  Google Scholar 

  21. F. Niu, D. Chen, L. Qin, N. Zhang, J. Wang, Z. Chen, and Y. Huang, ChemCatChem 7, 3279 (2015).

    Article  Google Scholar 

  22. H. Liu, Y. Guo, B. Guo, W. Dong, and D. Zhang, J. Eur. Ceram. Soc. 32, 4335 (2012).

    Article  Google Scholar 

  23. S.M. Masoudpanah, S.A. Seyyed Ebrahimi, M. Derakhshani, and S.M. Mirkazemi, J. Magn. Magn. Mater. 370, 122 (2014).

    Article  Google Scholar 

  24. S.M. Masoudpanah, M. Hasheminisari, and A. Ghasemi, J. Sol-Gel. Sci. Technol. 80, 487 (2016).

    Article  Google Scholar 

  25. X. Xu, Y.-H. Lin, P. Li, L. Shu, and C.-W. Nan, J. Am. Ceram. Soc. 94, 2296 (2011).

    Article  Google Scholar 

  26. M.A. Butler, J. Appl. Phys. 48, 1914 (1977).

    Article  Google Scholar 

  27. H. Wang, Y. Zheng, M.-Q. Cai, H. Huang, and H.L.W. Chan, Solid State Commun. 149, 641 (2009).

    Article  Google Scholar 

  28. T. Soltani and B.-K. Lee, Chem. Eng. J. 306, 204 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hasheminiasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Hasheminiasari, M., Masoudpanah, S.M. et al. Enhanced Photocatalytic Activity of Two-Pot-Synthesized BiFeO3–ZnFe2O4 Heterojunction Nanocomposite. J. Electron. Mater. 47, 2225–2229 (2018). https://doi.org/10.1007/s11664-017-6035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6035-2

Keywords

Navigation