Skip to main content
Log in

Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3–SrFe12O19 Composite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3–0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol–gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie–Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fiebig, Th Lottermoser, D. Frohlich, A.V. Goltsev, and R.V. Pisarev, Nature (London) 419, 818 (2002).

    Article  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).

    Article  Google Scholar 

  4. N.A. Spaldin and M. Fiebig, Science 309, 391 (2005).

    Article  Google Scholar 

  5. J.F. Scott, Nat. Mater. 6, 256 (2007).

    Article  Google Scholar 

  6. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.W. Cheong, Nature 429, 392 (2004).

    Article  Google Scholar 

  7. H. Schmid, Bull. Mater. Sci. 17, 1411 (1994).

    Article  Google Scholar 

  8. C.W. Nan, Phys. Rev. B 50, 6082 (1994).

    Article  Google Scholar 

  9. S.D. Chavan, S.G. Chavan, S.S. Mane, P.B. Joshi, and D.J. Salunkhe, J. Mater. Sci. Mater. Electron. 27, 1258 (2016).

    Google Scholar 

  10. I.B. Shameem Banu, A. Sathiya Priya, P. Komalavalli, and G. Shanmuganathan, J. Mater. Sci. Mater. Electron. 26, 101 (2015).

    Article  Google Scholar 

  11. A. Srinivasa, T. Karthik, R. Gopalan, and V. Chandrasekarana, Mater. Sci. Eng. B 172, 289 (2010).

    Article  Google Scholar 

  12. A.M.J.G. Run, D.R. Terrell, and J.H. Scholing, J. Mater. Sci. 9, 1710 (1974).

    Article  Google Scholar 

  13. G. Srinivasan, E.T. Rasmussen, B.J. Levin, and R. Hayes, Phys. Rev. B 65, 134402 (2002).

    Article  Google Scholar 

  14. Robert C. Pullar, ACS Comb. Sci. 14, 425 (2012).

    Article  Google Scholar 

  15. B. Want, M.D. Rather, and R. Samad, J. Mater. Sci. Mater. Electron. 27, 5860 (2016).

    Article  Google Scholar 

  16. X.H. Zhu, J. Li, and D.N. Zheng, Appl. Phys. Lett. 90, 142913 (2007).

    Article  Google Scholar 

  17. W. Li, J.G. Hao, W.F. Bai, Z.J. Xu, R.Q. Chu, and J.W. Zhai, J. Alloys Compd. 531, 46 (2012).

    Article  Google Scholar 

  18. P.K. Patel and K.L. Yadav, Phys. B 442, 39 (2014).

    Article  Google Scholar 

  19. O. Umit, A. Yahya, and M. Hadis, J. Mater. Sci. Mater. Electron. 20, 789 (2009).

    Article  Google Scholar 

  20. J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N.J. Mellors, and Y. Peng, ACS Nano 6, 2273 (2012).

    Article  Google Scholar 

  21. X. Meng, J. Mi, Q. Li, C. Bortolini, and M. Dong, Mater. Res. Express 1, 036106 (2014).

    Article  Google Scholar 

  22. P.K. Patel and K.L. Yadav, Phys. B 442, 39 (2014).

    Article  Google Scholar 

  23. S. Bhaskar Reddy, M.S. Ramachandra Rao, and K. Prasad Rao, Appl. Phys. Lett. 91, 022917 (2007).

    Article  Google Scholar 

  24. M. Fechner, S. Ostanin, and I. Mertig, Phys. Rev. B 77, 094112 (2008).

    Article  Google Scholar 

  25. P. Ren, Q. Wang, X. Wang, L. Wang, J. Wang, H. Fan, and G. Zhao, Mater. Lett. 174, 197 (2016).

    Article  Google Scholar 

  26. G.E. Manger, Porosity and Bulk Density of Sedimentary Rocks, serial no. 1144, chap. E (Geological Survey Bulletin, Washington, 1963), pp. E1–E55.

  27. M.J. Iqbal and M.N. Ashiq, Chem. Eng. J. 136, 383 (2008).

    Article  Google Scholar 

  28. J. Saggio-Woyansky and C.E. Scott, Am. Ceram. Soc. Bull. 71, 1674 (1999).

    Google Scholar 

  29. A.D. Shaikh and V.L. Mathe, Smart Mater. Struct. 18, 065014 (2009).

    Article  Google Scholar 

  30. A.A. Bokov and Z.G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  Google Scholar 

  31. Y. Wang, L. Li, J. Qi, and Z. Gui, Ceram. Int. 28, 657 (2002).

    Article  Google Scholar 

  32. X.J. Chou, J.W. Zhai, H.T. Jiang, and X. Yao, J. Appl. Phys. 102, 084106 (2007).

    Article  Google Scholar 

  33. B.K. Bammannavar and L.R. Naik, Smart Mater. Struct. 18, 085013 (2009).

    Article  Google Scholar 

  34. Y. Zhi and A. Chen, J. Appl. Phys. 9, 794 (2002).

    Google Scholar 

  35. R. Maier, J.L. Chon, J.J. Neumeier, and L.A. Bendersky, Appl. Phys. Lett. 78, 2536 (2001).

    Article  Google Scholar 

  36. S.S. Chougule and B.K. Chougule, Mater. Chem. Phys. 108, 408 (2008).

    Article  Google Scholar 

  37. B.K. Bammannavar and L.R. Naik, Smart Mater. Struct. 18, 085013 (2009).

    Article  Google Scholar 

  38. L.L. Hench and J.K. West, Principles of Electronic Ceramics (New York: Wiley, 1990), p. 189.

    Google Scholar 

  39. Z.Q. Zhuang, M.P. Harmer, D.M. Smyth, and R.E. Newnham, Mater. Res. Bull. 22, 1329 (1987).

    Article  Google Scholar 

  40. K.W. Wagner, Ann. Phys. 40, 818 (1993).

    Google Scholar 

  41. C.A. Guarany, L.H.Z. Pelaio, E.B. Araujo, K. Yukimitu, J.C. Moraes, and J.A. Eiras, J. Phys. Condens. Matter 15, 4851 (2003).

    Article  Google Scholar 

  42. M.A. Ahmed and E.H. El-Khawas, Indian J. Phys. A 74A, 497 (2000).

    Google Scholar 

  43. D.K. Kulkarni and C.S. Prakash, Bull. Mater. Sci. 17, 35 (1994).

    Article  Google Scholar 

  44. Y.P. Kin and E.A. Turov, Fiz. Met. Metalloved. 4, 95 (1957).

    Google Scholar 

  45. S. Ambily and C.S. Menon, Thin Solid Films 347, 284 (1999).

    Article  Google Scholar 

  46. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn, Clarendon: Oxford, 1972), p. K55.

    Google Scholar 

  47. K. Kamala Bharathi, G. Markandeyulu, and C.V. Ramana, Solid State Lett. 13, 98 (2010).

    Article  Google Scholar 

  48. H. He, J. Ma, J. Wang, and C.W. Nan, J. Appl. Phys. 103, 034103 (2008).

    Article  Google Scholar 

  49. L.P. Curecheriu, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, P. Postolache, A. Ianculescu, and P. Nanni, J. Appl. Phys. 107, 104106 (2010).

    Article  Google Scholar 

  50. J. Smit and H.P.J. Wijn, Adv. Electron. Electron. Phys. 6, 69 (1954).

    Article  Google Scholar 

  51. P.A. Jadhav, M.B. Shelar, and B.K. Chougule, J. Alloys Compd. 479, 385 (2009).

    Article  Google Scholar 

  52. X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, and Y. Du, Phys. Status Solidi (a) 193, 314 (2002).

    Article  Google Scholar 

  53. X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, and Y. Du, J. Magn. Magn. Mater. 238, 207 (2002).

    Article  Google Scholar 

  54. L. Zhang, J. Zhai, W. Mo, and X. Yao, Solid State Sci. 13, 321 (2011).

    Article  Google Scholar 

  55. G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).

    Article  Google Scholar 

  56. S.N. Babu, J.H. Hsu, Y.S. Chen, and J.G. Lin, J. Appl. Phys. 109, 07D904 (2011).

    Article  Google Scholar 

  57. Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Su, and Y. Yang, J. Mater. Chem. C 2, 2545 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basharat Want.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, M.u.D., Samad, R. & Want, B. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3–SrFe12O19 Composite. J. Electron. Mater. 47, 2143–2154 (2018). https://doi.org/10.1007/s11664-017-6025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6025-4

Keywords

Navigation