Skip to main content
Log in

Work Function and Conductivity of Inkjet-Printed Silver Layers: Effect of Inks and Post-treatments

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic properties of a printed layer are influenced by a number of factors, including the nature of the ink (nanoparticle- or solution-based), ink composition (solvents, additives, concentration), and post-treatment technologies, especially sintering. One of the major challenges in the field of printed electronics is achieving the desired performance, for example, in terms of conductivity, resistivity, or work function (WF). This work investigates the dependence of sheet resistance and WF on various sintering methodologies. Four different silver nanoparticle inks were inkjet-printed on a flexible polymeric foil and post-treated by thermal sintering (in an oven) or novel sintering processes using infrared or intense pulsed light. The surfaces of the printed and sintered layers were investigated optically, and various inhomogeneities in the layer surface were observed, varying from a smooth to a highly rough appearance with ring-shaped drying structures. An analysis of the sheet resistance revealed notable variation among the various inks and sintering methodologies used. Here, for the very first time, WF is measured and evaluated as a function of sintering methodology and silver ink, and the respective layer formation characteristics realized with the inkjet printing technology. The WF values obtained by ultraviolet photoemission show a similar spread and allow unambiguous trends to be tracked with respect to the type of ink and sintering method used. The values of the WF obtained range from 3.7 eV to 4.3 eV, approaching the reported bulk values of 4.3–4.7 eV. The various silver inks resulted in different WFs when the same sintering method was used, while the same silver ink resulted in different WFs when various sintering methods were applied. Therefore, it is believed that the WF can be tuned over a broad range in a controlled manner to satisfy electronic device requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Lee, B.H. Jun, T.H. Kim, and J. Joung, Inst. Phys. Publ. Nanotechnol. 17, 2424 (2006).

    Article  Google Scholar 

  2. A. Teichler, J. Perelaer, and U.S. Schubert, J. Mater. Chem. C 1, 1910 (2013).

    Article  Google Scholar 

  3. J.R. Castrejon-Pita, W.R.S. Baxter, J. Morgan, S. Temple, G.D. Martin, and I.M. Hutchings, Atomization Spray 23, 541 (2013).

    Article  Google Scholar 

  4. A. Kamyshny, J. Steinke, and S. Magdassi, Open Appl. Phys. J. 4, 19 (2011).

    Article  Google Scholar 

  5. H. Woo Choi, T. Zhou, M. Singh, and G.E. Jabbour, Nanoscale 7, 3338 (2015).

    Article  Google Scholar 

  6. Paul Calvert, Chem. Mater. 13, 3299 (2001).

    Article  Google Scholar 

  7. E. Sowade, K.Y. Mitra, E. Ramon, F. Villani, F. Loffredo, H.L. Gomes, and R.R. Baumann, Org. Electron. 30, 237 (2016).

    Article  Google Scholar 

  8. H.F. Castro, V. Correia, E. Sowade, K.Y. Mitra, J.G. Rocha, R.R. Baumann, and S. Lanceros-Mendez, Org. Electron. 38, 205 (2016).

    Article  Google Scholar 

  9. K.Y. Mitra, D. Mitra, K. Kasania, S. Hammerschmidt, and R.R. Baumann, J. Wearable Flex. Electron. 1, 1 (2016).

    Google Scholar 

  10. A. Moya, E. Sowade, F.J. del Campo, K.Y. Mitra, E. Ramon, R. Villa, R.R. Baumann, and G. Gabriel, Org. Electron. 39, 168 (2016).

    Article  Google Scholar 

  11. E. Sowade, E. Ramon, K.Y. Mitra, C. Martínez-Domingo, M. Pedró, J. Pallarès, F. Loffredo, F. Villani, H.L. Gomes, L. Terés, and R.R. Baumann, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  12. A. Kumar, H. Joshi, R. Pasricha, A.B. Mandale, and M. Sastry, J. Colloid Interface Sci. 264, 396 (2003).

    Article  Google Scholar 

  13. C.-C. Li, S.-J. Chang, F.-J. Su, S.-W. Lin, and Y.-C. Chou, Colloid Surf. A 419, 209 (2013).

    Article  Google Scholar 

  14. K. Ryu, Y.-J. Moon, K. Park, J.-Y. Hwang, and S.-J. Moon, J. Electron. Mater. 45, 312 (2016).

    Article  Google Scholar 

  15. J.R. Greer and R.A. Street, Acta Mater. 55, 6345 (2007).

    Article  Google Scholar 

  16. K.Y. Mitra, D. Weise, M. Hartwig, S. Kapadia, and R.R. Baumann, IEEE Electron. Dev. 63, 2777 (2016).

    Article  Google Scholar 

  17. E. Sowade, H. Kang, K.Y. Mitra, O.J. Weiß, J. Weber, and R.R. Baumann, J. Mater. Chem. C 3, 11815 (2015).

    Article  Google Scholar 

  18. D. Mitra, K.Y. Mitra, M. Hartwig, and R.R. Baumann, J. Imaging Sci. Technol. 60, 40403 (2016).

    Article  Google Scholar 

  19. J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U.S. Schubert, and D. Lupo, Thin Solid Films 556, 452 (2014).

    Article  Google Scholar 

  20. H. Kang, E. Sowade, and R.R. Baumann, ACS Appl. Mater. Interface 6, 1682 (2014).

    Article  Google Scholar 

  21. S. Wünscher, R. Abbel, J. Perelaer, and U.S. Schubert, J. Mater. Chem. C 2, 10232 (2014).

    Article  Google Scholar 

  22. I. Brodie, S.H. Chou, and H. Yuan, Surf. Sci. 625, 112 (2014).

    Article  Google Scholar 

  23. Y. Wan, Y. Li, Q. Wang, K. Zhang, and W. Yuhou, Int. J. Electrochem. Sci. 7, 5204 (2012).

    Google Scholar 

  24. M. Chelvayohan and C.H.B. Mee, J. Phys. Part C Solid 15, 2305 (1982).

    Article  Google Scholar 

  25. P. Wang, D. Tanaka, S. Ryuzaki, S. Araki, K. Okamoto, and K. Tamada, Appl. Phys. Lett. 107, 151601 (2015).

    Article  Google Scholar 

  26. D. Kim, S. Jeong, H. Shin, Y. Xia, and J. Moon, Adv. Mater. 20, 3084 (2008).

    Google Scholar 

  27. K. Fukuda, T. Sekine, Y. Kobayashi, Y. Takeda, M. Shimizu, N. Yamashita, D. Kumaki, M. Itoh, M. Nagaoka, T. Toda, S. Saito, M. Kurihara, M. Sakamoto, and S. Tokito, Org. Electron. 13, 3296 (2012).

    Article  Google Scholar 

  28. D. Soltman and V. Subramanian, Langmuir 24, 2224 (2008).

    Article  Google Scholar 

  29. T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, and R.R. Baumann, Ind. Eng. Chem. Res. 54, 769 (2015).

    Article  Google Scholar 

  30. H. Hu and R.G. Larson, J. Phys. Chem. B 110, 7090 (2006).

    Article  Google Scholar 

  31. T.U. Kampen, A. Das, S. Park, W. Hoyer, and D.R.T. Zahn, Appl. Surf. Sci. 234, 333 (2004).

    Article  Google Scholar 

  32. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  Google Scholar 

  33. C.J.P.A.V. Naumkin, A. Kraut-Vass, and S.W. Gaarenstroom, NIST X-ray Photoelectron Spectroscopy Database, NIST.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Mitra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, D., Mitra, K.Y., Dzhagan, V. et al. Work Function and Conductivity of Inkjet-Printed Silver Layers: Effect of Inks and Post-treatments. J. Electron. Mater. 47, 2135–2142 (2018). https://doi.org/10.1007/s11664-017-6024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6024-5

Keywords

Navigation