Skip to main content
Log in

Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/n +-emitter layer with varying sheet resistances and aluminum paste/p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity (ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.N. Vinod, J. Electron. Mater. 42, 2905 (2013).

    Article  Google Scholar 

  2. Y. Yang, S. Seyedmohammadi, U. Kumar, D. Gnizak, E. Graddy, and A. Shaikh, Energy Procedia 8, 607 (2011).

    Article  Google Scholar 

  3. A. Ebong and N. Chen, in 9th International Confernce on High Capacity Optical Networks and Emerging/Enabling Technologies (2012), pp. 102–109.

  4. G. Grupp, D. Biro, G. Emanuel, R. Preu, F. Schitthelm, and G. Willeke, in 31th IEEE Photovoltaic Specialists Conference (2005), pp. 1289–1292.

  5. D.K. Schroder and D.L. Meier, IEEE Trans. Electron Devices ED-31, 637 (1984).

    Article  Google Scholar 

  6. C.Y. Chang, Y.K. Fang, and S.M. Sze, Solid State Electron. 14, 541 (1971).

    Article  Google Scholar 

  7. D.L. Meier and D.K. Schroder, IEEE Trans. Electron Devices ED-31, 647 (1984).

    Article  Google Scholar 

  8. I.B. Cooper, A. Ebong, B.C. Rounsaville, and A. Rohatgi, IEEE Electron Device Lett. 31, 461 (2010).

    Article  Google Scholar 

  9. S.W. Park, E.C. Cho, J.H. Yu, and D.W. Kim, Solid State Phenom. 124–126, 923 (2007).

    Article  Google Scholar 

  10. D.M. Huljic, D. Biro, R. Preu, C.C. Castillo, and R. Ludemann, in 28th IEEE Photovoltaic Specialists Conference (2000), pp. 379–382.

  11. J.W. Jeong, A. Rohatgi, V. Yelundur, A. Ebong, M.D. Rosenblum, and J.P. Kalejs, IEEE Trans. Electron Devices 48, 2836 (2001).

    Article  Google Scholar 

  12. S.W. Glunz, R. Preu, and D. Biro, Comprehensive Renewable Energy, ed. A.A.M. Sayigh (Hoboken: Elsevier, 2012), p. 62.

    Google Scholar 

  13. M.M. Hilali, M.M. Al-Jassim, B. To, H. Moutinho, A. Rohatgi, and S. Asher, J. Electrochem. Soc. 152, G742 (2005).

    Article  Google Scholar 

  14. P.N. Vinod, J. Mater. Sci. Mater. Electron. 18, 805 (2007).

    Article  Google Scholar 

  15. G. Kulushich, B. Bazer-Bachi, T. Takahashi, H. Iida, R. Zapf-Gottwick, and J.H. Werner, Energy Procedia 27, 485 (2012).

    Article  Google Scholar 

  16. G.K. Reeves and H.B. Harrison, IEEE Electron Device Lett. EDL-3, 111 (1982).

    Article  Google Scholar 

  17. A.S.H. Van der Heide, J.H. Bultman, J. Hoornstra, and A. Schönecker, Sol. Energy Mater. Sol. Cells 74, 43 (2002).

    Article  Google Scholar 

  18. P.N. Vinod, Semicond. Sci. Technol. 20, 966 (2005).

    Article  Google Scholar 

  19. H.H. Berger, J. Electrochem. Soc. 119, 507 (1972).

    Article  Google Scholar 

  20. P.N. Vinod, J. Mater. Sci. Mater. Electron. 22, 1248 (2011).

    Article  Google Scholar 

  21. E.G. Woelk, H. Krautle, and H. Beneking, IEEE Trans. Electron Devices 33, 19 (1986).

    Article  Google Scholar 

  22. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Hoboken: Wiley, 2006), pp. 131–140.

    Google Scholar 

  23. A. Goetzberger, J. Knobloch, and B. Voss, Crystalline Silicon Solar Cells (Chichester: Wiley, 1998), pp. 109–110.

    Google Scholar 

  24. P. Patnaik, Handbook of Inorganic Chemicals (New York: McGraw-Hill, 2003), p. 11.

    Google Scholar 

  25. K.K. Hong, S. Bin Cho, J.S. You, J.W. Jeong, S.M. Bea, and J.Y. Huh, Sol. Energy Mater. Sol. Cells 93, 898 (2009).

    Article  Google Scholar 

  26. J.D. Fields, M.I. Ahmad, V.L. Pool, J. Yu, D.G. Van Campen, P.A. Parilla, M.F. Toney, and M.F.A.M. van Hest, Nat. Commun. 7, 11143 (2016).

    Article  Google Scholar 

  27. Y. Ren, Y. Yang, T. Bao, C. Fan, and G. Chen, Surf. Interface Anal. 44, 856 (2012).

    Article  Google Scholar 

  28. M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Combust. Theory Model. 10, 603 (2006).

    Article  Google Scholar 

  29. G. Schubert, F. Huster, and P. Fath, Sol. Energy Mater. Sol. Cells 90, 3399 (2006).

    Article  Google Scholar 

  30. E. Cabrera, S. Olibet, J. Glatz-Reichenbach, R. Kopecek, D. Reinke, and G. Schubert, Energy Procedia 8, 540 (2011).

    Article  Google Scholar 

  31. M.M. Hilali, K. Nakayashiki, C. Khadilkar, R.C. Reedy, A. Rohatgi, A. Shaikh, S. Kim, and S. Sridharan, J. Electrochem. Soc. 153, A5 (2006).

    Article  Google Scholar 

  32. Z.G. Li, L. Liang, A.S. Ionkin, B.M. Fish, M.E. Lewittes, L.K. Cheng, and K.R. Mikeska, J. Appl. Phys. 110, 074304 (2011).

    Article  Google Scholar 

  33. S. Narasimha, A. Rohatgi, and A.W. Weeber, IEEE Trans. Electron Devices 46, 1363 (1999).

    Article  Google Scholar 

  34. E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, J. Appl. Phys. 107, 124516 (2010).

    Article  Google Scholar 

  35. P.N. Vinod, J. Alloys Compd. 470, 393 (2009).

    Article  Google Scholar 

  36. S.M. Sze and K.K. Ng, Physics of Semicondcutor Devices, 3rd ed. (Hoboken: Wiley, 2007), p. 191.

    Google Scholar 

  37. S. Kim, S. Park, Y. Do Kim, S. Bae, H. Boo, H. Kim, K.D. Lee, S.J. Tark, and D. Kim, J. Nanosci. Nanotechnol. 14, 7774 (2014).

    Article  Google Scholar 

  38. J. Lee, Y.-J. Lee, M. Ju, K. Ryu, B. Kim, and J. Yi, Nanoscale Res. Lett. 7, 32 (2012).

    Article  Google Scholar 

  39. G. Kulushich, R. Zapf-Gottwick, V.X. Nguyen, and J.H. Werner, Phys. Status Solidi Rapid Res. Lett. 6, 370 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mahmmod Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.M., Leong, C.S., Sopian, K. et al. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell. J. Electron. Mater. 47, 2120–2134 (2018). https://doi.org/10.1007/s11664-017-6022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6022-7

Keywords

Navigation