Advertisement

Journal of Electronic Materials

, Volume 47, Issue 6, pp 3254–3259 | Cite as

High-Throughput Screening of Sulfide Thermoelectric Materials Using Electron Transport Calculations with OpenMX and BoltzTraP

  • Masanobu Miyata
  • Taisuke Ozaki
  • Tsunehiro Takeuchi
  • Shunsuke Nishino
  • Manabu Inukai
  • Mikio Koyano
Topical Collection: International Conference on Thermoelectrics 2017
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2017

Abstract

The electron transport properties of 809 sulfides have been investigated using density functional theory (DFT) calculations in the relaxation time approximation, and a material design rule established for high-performance sulfide thermoelectric (TE) materials. Benchmark electron transport calculations were performed for Cu12Sb4S13 and Cu26V2Ge6S32, revealing that the ratio of the scattering probability of electrons and phonons (κ lat τ el −1 ) was constant at about 2 × 1014 W K−1 m−1 s−1. The calculated thermopower S dependence of the theoretical dimensionless figure of merit ZT DFT of the 809 sulfides showed a maximum at 140 μV K−1 to 170 μV K−1. Under the assumption of constant κ lat τ el −1 of 2 × 1014 W K−1 m−1 s−1 and constant group velocity v of electrons, a slope of the density of states of 8.6 states eV−2 to 10 states eV−2 is suitable for high-ZT sulfide TE materials. The Lorenz number L dependence of ZT DFT for the 809 sulfides showed a maximum at L of approximately 2.45 × 10−8 V2 K−2. This result demonstrates that the potential of high-ZT sulfide materials is highest when the electron thermal conductivity κ el of the symmetric band is equal to that of the asymmetric band.

Keywords

Thermoelectric conversion sulfides DFT calculations  high-throughput screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to Dr. Toyoda (Industrial Research Institute of Ishikawa) for fruitful discussions related to thermoelectrics and physics. This work was supported financially by Grants from the Murata Science Foundation and the Thermoelectric Society of Japan, and by a JAIST Research Grant.

Supplementary material

11664_2017_6020_MOESM1_ESM.pdf (818 kb)
Supplementary material 1 (PDF 817 kb)

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    O. Yamashita and S. Tomiyoshi, J. Appl. Phys. 95, 161 (2004).CrossRefGoogle Scholar
  3. 3.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).CrossRefGoogle Scholar
  5. 5.
    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).CrossRefGoogle Scholar
  6. 6.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X.Y. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Suekuni, F.S. Kim, H. Nishiate, M. Ohta, H.I. Tanaka, and T. Takabatake, Appl. Phys. Lett. 105, 132107 (2014).CrossRefGoogle Scholar
  8. 8.
    G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140–12146 (2006).CrossRefGoogle Scholar
  9. 9.
    W. Chen, J.H. Pöhls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Persson, and A. Jain, J. Mater. Chem. C 4, 4414–4426 (2016).CrossRefGoogle Scholar
  10. 10.
    P. Gorai, P. Parilla, E.S. Toberer, and V. Stevanovic, Chem. Mater. 27, 6213–6221 (2015).CrossRefGoogle Scholar
  11. 11.
    Y.X. Chen, A. Yamamoto, and T. Takeuchi, J. Alloys Compd. 695, 1631–1636 (2017).CrossRefGoogle Scholar
  12. 12.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
  13. 13.
    T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).CrossRefGoogle Scholar
  14. 14.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006).CrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  16. 16.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, and WIEN 2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ed. K. Schwarz (Wien: Techn. Universitat, 2001),Google Scholar
  17. 17.
    G. Ding, G. Gao, and K. Yao, Sci. Rep. 5, 9567 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
  19. 19.
    T. Björkman, Comput. Phys. Commun. 182, 1183–1186 (2011).CrossRefGoogle Scholar
  20. 20.
    C.G. Broyden, J. Inst. Math. Appl. 6, 76 (1970).CrossRefGoogle Scholar
  21. 21.
    R. Fletcher, Comput. J. 13, 317 (1970).CrossRefGoogle Scholar
  22. 22.
    D. Goldfarb, Math. Comp. 24, 23 (1970).CrossRefGoogle Scholar
  23. 23.
    D.F. Shanno, Math. Comp. 24, 647 (1970).CrossRefGoogle Scholar
  24. 24.
    A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).CrossRefGoogle Scholar
  25. 25.
    P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem.) 114, 31 (1984).CrossRefGoogle Scholar
  26. 26.
    T.M. Tritt, Science 283, 804 (1999).CrossRefGoogle Scholar
  27. 27.
    M. Thesberg and H. Kosina, Phys. Rev. B 95, 125206 (2017).CrossRefGoogle Scholar
  28. 28.
    S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588–16597 (2011).CrossRefGoogle Scholar
  29. 29.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373–377 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Masanobu Miyata
    • 1
  • Taisuke Ozaki
    • 2
  • Tsunehiro Takeuchi
    • 3
  • Shunsuke Nishino
    • 3
  • Manabu Inukai
    • 3
  • Mikio Koyano
    • 1
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and Technology IshikawaJapan
  2. 2.Institute for Solid State PhysicsThe University of TokyoChibaJapan
  3. 3.Toyota Technological InstituteNagoyaJapan

Personalised recommendations