High-Throughput Screening of Sulfide Thermoelectric Materials Using Electron Transport Calculations with OpenMX and BoltzTraP

Abstract

The electron transport properties of 809 sulfides have been investigated using density functional theory (DFT) calculations in the relaxation time approximation, and a material design rule established for high-performance sulfide thermoelectric (TE) materials. Benchmark electron transport calculations were performed for Cu12Sb4S13 and Cu26V2Ge6S32, revealing that the ratio of the scattering probability of electrons and phonons (κ lat τ −1el ) was constant at about 2 × 1014 W K−1 m−1 s−1. The calculated thermopower S dependence of the theoretical dimensionless figure of merit ZT DFT of the 809 sulfides showed a maximum at 140 μV K−1 to 170 μV K−1. Under the assumption of constant κ lat τ −1el of 2 × 1014 W K−1 m−1 s−1 and constant group velocity v of electrons, a slope of the density of states of 8.6 states eV−2 to 10 states eV−2 is suitable for high-ZT sulfide TE materials. The Lorenz number L dependence of ZT DFT for the 809 sulfides showed a maximum at L of approximately 2.45 × 10−8 V2 K−2. This result demonstrates that the potential of high-ZT sulfide materials is highest when the electron thermal conductivity κ el of the symmetric band is equal to that of the asymmetric band.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. 2.

    O. Yamashita and S. Tomiyoshi, J. Appl. Phys. 95, 161 (2004).

    Article  Google Scholar 

  3. 3.

    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  4. 4.

    K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).

    Article  Google Scholar 

  5. 5.

    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  Google Scholar 

  6. 6.

    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X.Y. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  7. 7.

    K. Suekuni, F.S. Kim, H. Nishiate, M. Ohta, H.I. Tanaka, and T. Takabatake, Appl. Phys. Lett. 105, 132107 (2014).

    Article  Google Scholar 

  8. 8.

    G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140–12146 (2006).

    Article  Google Scholar 

  9. 9.

    W. Chen, J.H. Pöhls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Persson, and A. Jain, J. Mater. Chem. C 4, 4414–4426 (2016).

    Article  Google Scholar 

  10. 10.

    P. Gorai, P. Parilla, E.S. Toberer, and V. Stevanovic, Chem. Mater. 27, 6213–6221 (2015).

    Article  Google Scholar 

  11. 11.

    Y.X. Chen, A. Yamamoto, and T. Takeuchi, J. Alloys Compd. 695, 1631–1636 (2017).

    Article  Google Scholar 

  12. 12.

    T. Ozaki, Phys. Rev. B 67, 155108 (2003).

    Article  Google Scholar 

  13. 13.

    T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).

    Article  Google Scholar 

  14. 14.

    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006).

    Article  Google Scholar 

  15. 15.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  16. 16.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, and WIEN 2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ed. K. Schwarz (Wien: Techn. Universitat, 2001),

    Google Scholar 

  17. 17.

    G. Ding, G. Gao, and K. Yao, Sci. Rep. 5, 9567 (2015).

    Article  Google Scholar 

  18. 18.

    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  19. 19.

    T. Björkman, Comput. Phys. Commun. 182, 1183–1186 (2011).

    Article  Google Scholar 

  20. 20.

    C.G. Broyden, J. Inst. Math. Appl. 6, 76 (1970).

    Article  Google Scholar 

  21. 21.

    R. Fletcher, Comput. J. 13, 317 (1970).

    Article  Google Scholar 

  22. 22.

    D. Goldfarb, Math. Comp. 24, 23 (1970).

    Article  Google Scholar 

  23. 23.

    D.F. Shanno, Math. Comp. 24, 647 (1970).

    Article  Google Scholar 

  24. 24.

    A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).

    Article  Google Scholar 

  25. 25.

    P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem.) 114, 31 (1984).

    Article  Google Scholar 

  26. 26.

    T.M. Tritt, Science 283, 804 (1999).

    Article  Google Scholar 

  27. 27.

    M. Thesberg and H. Kosina, Phys. Rev. B 95, 125206 (2017).

    Article  Google Scholar 

  28. 28.

    S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588–16597 (2011).

    Article  Google Scholar 

  29. 29.

    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373–377 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Toyoda (Industrial Research Institute of Ishikawa) for fruitful discussions related to thermoelectrics and physics. This work was supported financially by Grants from the Murata Science Foundation and the Thermoelectric Society of Japan, and by a JAIST Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masanobu Miyata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 817 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyata, M., Ozaki, T., Takeuchi, T. et al. High-Throughput Screening of Sulfide Thermoelectric Materials Using Electron Transport Calculations with OpenMX and BoltzTraP. Journal of Elec Materi 47, 3254–3259 (2018). https://doi.org/10.1007/s11664-017-6020-9

Download citation

Keywords

  • Thermoelectric conversion
  • sulfides
  • DFT calculations
  • high-throughput screening