Skip to main content

Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells

Abstract

Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.

References

  1. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D.H. Lien, and Z.L. Wang, ACS Nano 4, 6285 (2010).

    Article  Google Scholar 

  2. Y. Yu, Z. Zhang, X. Yin, A. Kvit, Q. Liao, Z. Kang, X. Yan, Y. Zhang, and X.D. Wang, Nat. Energy 2, 17045 (2017).

    Article  Google Scholar 

  3. Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, and X.D. Wang, ACS Nano 9, 564 (2015).

    Article  Google Scholar 

  4. H. Li, Y. Yu, M.B. Starr, Z. Li, and X.D. Wang, J. Phys. Chem. Lett. 6, 3410 (2015).

    Article  Google Scholar 

  5. F. Fan, S. Turkdogan, Z. Liu, D. Shelhammer, and C.Z. Ning, Nat. Nanotechnol. 10, 796 (2015).

    Article  Google Scholar 

  6. Z.L. Wang, Adv. Mater. 19, 889 (2007).

    Article  Google Scholar 

  7. Z.L. Wang, J. Phys. Chem. Lett 1, 1388 (2010).

    Article  Google Scholar 

  8. Y. Zhang, Y. Liu, and Z.L. Wang, Adv. Mater. 23, 3004 (2011).

    Article  Google Scholar 

  9. V.M. Voora, T. Hofmann, M. Brandt, M. Lorenz, M. Grundmann, N. Ashkenov, H. Schmidt, N. Ianno, and M. Schubert, Phys. Rev. B 81, 2498 (2010).

    Article  Google Scholar 

  10. L. Pintilie and M. Alexe, J. Appl. Phys. 98, 124103 (2005).

    Article  Google Scholar 

  11. P. Zubko, D.J. Jung, and J.F. Scott, J. Appl. Phys. 100, 114112 (2006).

    Article  Google Scholar 

  12. Y. Watanabe, Phys. Rev. B 57, 789 (1998).

    Article  Google Scholar 

  13. A. Bykhovski, B. Gelmont, M. Shur, and A. Khan, J. Appl. Phys. 77, 1616 (1995).

    Article  Google Scholar 

  14. S.-H. Park and S.-L. Chuang, Appl. Phys. Lett. 72, 3103 (1998).

    Article  Google Scholar 

  15. J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z.L. Wang, Nano Lett. 8, 3973 (2008).

    Article  Google Scholar 

  16. W. Wu and Z.L. Wang, Nano Lett. 11, 2779 (2011).

    Article  Google Scholar 

  17. J. Song, Y. Zhang, C. Xu, W. Wu, and Z.L. Wang, Nano Lett. 11, 2829 (2011).

    Article  Google Scholar 

  18. Q. Yang, W. Wang, S. Xu, and Z.L. Wang, Nano Lett. 11, 4012 (2011).

    Article  Google Scholar 

  19. Y. Hu, Y. Zhang, Y. Chang, R.L. Snyder, and Z.L. Wang, ACS Nano 4, 4220 (2010).

    Article  Google Scholar 

  20. F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng., R 83, 1 (2014).

    Article  Google Scholar 

  21. Z. Li, F. Wang, A. Kvit, and X. Wang, J. Phys. Chem. C 119, 4397 (2015).

    Article  Google Scholar 

  22. F. Wang, J.E. Jakes, D. Geng, and X. Wang, ACS Nano 7, 6007 (2013).

    Article  Google Scholar 

  23. F. Wang, J.H. Seo, Z. Ma, and X. Wang, ACS Nano 6, 2602 (2012).

    Article  Google Scholar 

  24. K.A. Bogle, M.N. Bachhav, M.S. Deo, N. Valanoor, and S.B. Ogale, Appl. Phys. Lett. 95, 203502 (2009).

    Article  Google Scholar 

  25. J.W. Quilty, A. Shibata, J.Y. Son, K. Takubo, T. Mizokawa, H. Toyosaki, T. Fukumura, and M. Kawasaki, Phys. Rev. Lett. 96, 027202 (2006).

    Article  Google Scholar 

  26. K.K. Ghuman and C.V. Singh, J. Phys. Condens. Mater. 25, 475501 (2013).

    Article  Google Scholar 

  27. G. Marcì, V. Augugliaro, M.J. López-Muñoz, C. Martín, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A.M. Venezia, J. Phys. Chem. B 105, 1026 (2001).

    Article  Google Scholar 

  28. B. Prasai, B. Cai, M.K. Underwood, J.P. Lewis, and D.A. Drabold, J. Mater. Sci. 47, 7515 (2012).

    Article  Google Scholar 

  29. J. Shi, M.B. Starr, and X. Wang, Adv. Mater. 24, 4683 (2012).

    Article  Google Scholar 

  30. J. Shi, M.B. Starr, H. Xiang, Y. Hara, M.A. Anderson, J.H. Seo, Z. Ma, and X. Wang, Nano Lett. 11, 5587 (2011).

    Article  Google Scholar 

  31. J. Shi, P. Zhao, and X. Wang, Adv. Mater. 25, 916 (2013).

    Article  Google Scholar 

  32. J.F. Wager, Thin Solid Films 516, 1755 (2008).

    Article  Google Scholar 

  33. L.D. Bozano, B.W. Kean, V.R. Deline, J.R. Salem, and J.C. Scott, Appl. Phys. Lett. 84, 607 (2004).

    Article  Google Scholar 

Download references

AcknowledgEments

The financial aids of Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG18E020004) and Chinese National Natural Science Foundation (Grant Nos. 61704042 and 61504034) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Li or Zhenguo Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhou, Y., Du, G. et al. Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells. J. Electron. Mater. 47, 1762–1767 (2018). https://doi.org/10.1007/s11664-017-6018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6018-3

Keywords

  • Piezoelectric potential
  • interfacial band structure
  • resistive switching characteristics
  • heterojunction cell