Skip to main content

Stable Ferroelectric Behavior of Nb-Modified Bi0.5K0.5TiO3-Bi(Mg0.5Ti0.5)O3 Lead-Free Relaxor Ferroelectric Ceramics

Abstract

Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ∼ 68 pC/N with a lower coercive field (E c) of ∼ 22 kV/cm and an improved remnant polarization (P r) of ∼ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015).

    Article  Google Scholar 

  2. 2.

    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, and M.H. Kim, J. Alloys Compd. 682, 302 (2016).

    Article  Google Scholar 

  3. 3.

    C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Materiomics 2, 1 (2016).

    Article  Google Scholar 

  4. 4.

    T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, and D. Damjanovic, J. Am. Ceram. Soc. 97, 1993 (2014).

    Article  Google Scholar 

  5. 5.

    S.J. Zhang, R. Xia, and T.R. Shrout, J. Electroceram. 19, 251 (2007).

    Article  Google Scholar 

  6. 6.

    Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 43, 7556 (2004).

    Article  Google Scholar 

  7. 7.

    Y. Hiruma, K. Yoshii, H. Nagata, and T. Takenaka, J. Appl. Phys. 103, 084121 (2008).

    Article  Google Scholar 

  8. 8.

    M.I. Morozov, M.A. Einarsrud, T. Grande, and D. Damjanovic, Ferroelectrics 439, 88 (2012).

    Article  Google Scholar 

  9. 9.

    H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li, and Z.B. Pei, J. Phys. D Appl. Phys. 41, 115413 (2008).

    Article  Google Scholar 

  10. 10.

    M. Bengagi, F. Morini, M.E. Maaoui, and P. Marchet, Phys. Status Solidi A 209, 2063 (2012).

    Article  Google Scholar 

  11. 11.

    P. Jaita, P. Jarupoom, R. Yimnirun, G. Rujijanagul, and D.P. Cann, Ceram. Int. 42, 15940 (2016).

    Article  Google Scholar 

  12. 12.

    Z. Pan, Q. Wang, J. Chen, C. Liu, L. Fan, L. Liu, L. Fang, and X. Xing, J. Am. Ceram. Soc. 98, 104 (2015).

    Article  Google Scholar 

  13. 13.

    Y. Pu, P. Gao, T. Wu, X. Liu, and Z. Dong, J. Electron. Mater. 44, 332 (2015).

    Article  Google Scholar 

  14. 14.

    A. Khesro, D.W. Wang, F. Hussain, D.C. Sinclair, A. Feteira, and I.M. Reaney, Appl. Phys. Lett. 109, 142907 (2016).

    Article  Google Scholar 

  15. 15.

    A.J. Royles, A.J. Bell, A.P. Jephcoat, A.K. Kleppe, S.J. Milne, and T.P. Comyn, Appl. Phys. Lett. 97, 132909 (2010).

    Article  Google Scholar 

  16. 16.

    B. Hu, M. Zhu, J. Guo, Y. Wang, M. Zheng, and Y. Hou, J. Am. Ceram. Soc. 99, 1637 (2016).

    Article  Google Scholar 

  17. 17.

    A. Hussain, A. Maqbool, R.A. Malik, J.U. Rahman, T.K. Song, W.J. Kim, and M.H. Kim, Ceram. Int. 41, S26 (2015).

    Article  Google Scholar 

  18. 18.

    A. Zeb and S.J. Milne, J. Am. Ceram. Soc. 97, 2413 (2014).

    Article  Google Scholar 

  19. 19.

    A. Zaman, A. Hussain, R.A. Malik, A. Maqbool, S. Nahm, and M.H. Kim, J. Phys. D Appl. Phys. 49, 175301 (2016).

    Article  Google Scholar 

  20. 20.

    A. Maqbool, A. Hussain, R.A. Malik, J.U. Rahman, A. Zaman, T.K. Song, W.J. Kim, and M.H. Kim, Mater. Sci. Eng., B 199, 105 (2015).

    Article  Google Scholar 

  21. 21.

    H. Zhang, D. Zheng, S. Hu, C. Cheng, G. Peng, J. Zhang, and L.L. Li, J. Mater. Sci.: Mater. Electron. 28, 67 (2017).

    Google Scholar 

  22. 22.

    V. Kalem, J. Mater. Sci.: Mater. Electron. 27, 8606 (2016).

    Google Scholar 

  23. 23.

    A. Maqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, and M.H. Kim, Phys. Status Solidi A 211, 1709 (2014).

    Article  Google Scholar 

  24. 24.

    J. Yin, C. Zhao, Y. Zhang, and J. Wu, J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.15083.

    Google Scholar 

  25. 25.

    L. Wu, B. Shen, Q. Hu, J. Chen, Y. Wang, Y. Xia, J. Yin, and Z. Liu, J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.15009.

    Google Scholar 

  26. 26.

    R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.J. Kim, and M.H. Kim, RSC Adv. 5, 96953 (2015).

    Article  Google Scholar 

  27. 27.

    A. Hussain, A. Maqbool, R.A. Malik, J.H. Lee, Y.S. Sung, T.K. Song, and M.H. Kim, Ceram. Int. 43, S204 (2017).

    Article  Google Scholar 

  28. 28.

    G. Dong, H. Fan, J. Shi, and M. Li, J. Am. Ceram. Soc. 98, 1150 (2015).

    Article  Google Scholar 

  29. 29.

    A. Ullah, C.W. Ahn, R.A. Malik, and I.W. Kim, Phys. B 444, 27 (2014).

    Article  Google Scholar 

  30. 30.

    R.F. Ge, Z.H. Zhao, S.F. Duan, X.Y. Kang, Y.K. Lv, D.S. Yin, and Y. Dai, J. Alloys Compd. 724, 1000 (2017).

    Article  Google Scholar 

  31. 31.

    X. Liu and X. Tan, Adv. Mater. 28, 574 (2016).

    Article  Google Scholar 

  32. 32.

    W. Bai, Y. Bian, J. Hao, B. Shen, and J. Zhai, J. Am. Ceram. Soc. 96, 246 (2013).

    Article  Google Scholar 

  33. 33.

    J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, and X. Gao, J. Appl. Phys. 113, 114106 (2013).

    Article  Google Scholar 

  34. 34.

    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.W. Ahn, J.U. Rahman, T.K. Song, W.J. Kim, and M.H. Kim, J. Am. Ceram. Soc. 98, 3842 (2015).

    Article  Google Scholar 

  35. 35.

    S. Gao, Z. Yao, L. Ning, G. Dong, H. Fan, and Q. Li, Adv. Eng. Mater. (2017). https://doi.org/10.1002/adem.201700125.

    Google Scholar 

  36. 36.

    H. Qi, R. Zuo, D. Zheng, and A. Xie, J. Alloys Compd. 724, 774 (2017).

    Article  Google Scholar 

  37. 37.

    X. Liu, J. Zhai, B. Shen, F. Li, and P. Li, J. Electron. Mater. 46, 5553 (2017).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), as funded by the Ministry of Education, Science and Technology (MEST; 2011-0030058).

Author information

Affiliations

Author notes

  1. Arif Zaman, Rizwan Ahmed Malik, and Adnan Maqbool have contributed equally to this work.

    Authors

    Corresponding author

    Correspondence to Myong-Ho Kim.

    Rights and permissions

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Zaman, A., Malik, R.A., Maqbool, A. et al. Stable Ferroelectric Behavior of Nb-Modified Bi0.5K0.5TiO3-Bi(Mg0.5Ti0.5)O3 Lead-Free Relaxor Ferroelectric Ceramics. Journal of Elec Materi 47, 2103–2109 (2018). https://doi.org/10.1007/s11664-017-6017-4

    Download citation

    Keywords

    • Lead-free
    • piezoelectricity
    • ferroelectricity
    • phase transitions
    • electrical properties