Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of Electronic Materials
  3. Article
3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Generation of Flexible Multifunctional Electronic Textile Displaying Appropriate Fastness Properties Utilizing Single-Stage Inkjet Printing onto Cotton Fabric Pre-treated with PVC

23 February 2023

Ali Goudarzi, Atasheh Soleimani-Gorgani & Ozan Avinc

Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures

21 March 2022

U. G. Mihiri Ekanayake, K. E. D. Y. Taniya Dayananda, … M. M. M. G. Prasanga G. Mantilaka

Polydopamine Treated and PEDOT:PSS Coated Wash Durable Conductive Textiles for Wearable Applications

30 April 2022

G. M. Nazmul Islam, M. Azam Ali & Stewart Collie

The use of mussel-inspired polydopamine interlayer for high-efficiency surface functionalization of PET fabrics

14 March 2022

Abdurrahman Telli & Mahmut Taş

Electrically conductive highly elastic polyamide/lycra fabric treated with PEDOT:PSS and polyurethane

28 March 2019

Melkie Getnet Tadesse, Desalegn Alemu Mengistie, … Vincent Nierstrasz

Facile fabrication of durable superamphiphobic PET fabrics

10 December 2019

Xuan Zhou, Si Sun, … Yong Jiang

Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications

23 October 2020

Ben Niu, Su Yang, … MingKin Koo

Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED

21 September 2018

Dong Jun Lee, Youngsu Oh, … Byeong-Kwon Ju

WPU/Cu2-XSe coated cotton fabrics for photothermal conversion and photochromic applications

23 May 2021

Deshan Cheng, Yuhang Liu, … Xin Wang

Download PDF
  • Open Access
  • Published: 19 December 2017

3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications

  • Melkie Getnet Tadesse  ORCID: orcid.org/0000-0002-0781-319X1,2,3,
  • Delia Dumitrescu1,
  • Carmen Loghin2,
  • Yan Chen3,
  • Lichuan Wang3 &
  • …
  • Vincent Nierstrasz1 

Journal of Electronic Materials volume 47, pages 2082–2092 (2018)Cite this article

  • 1825 Accesses

  • 34 Citations

  • 5 Altmetric

  • Metrics details

Abstract

Electroluminescence (EL) is the property of a semiconductor material pertaining to emitting light in response to an electrical current or a strong electric field. The purpose of this paper is to develop a flexible and lightweight EL device. Thermogravimetric analysis (TGA) was conducted to observe the thermal degradation behavior of NinjaFlex. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)—PEDOT:PSS—with ethylene glycol (EG) was coated onto polyester fabric where NinjaFlex was placed onto the coated fabric using three-dimensional (3D) printing and phosphor paste, and BendLay filaments were subsequently coated via 3D printing. Adhesion strength and flexibility of the 3D-printed NinjaFlex on textile fabrics were investigated. The TGA results of the NinjaFlex depict no weight loss up to 150°C and that the NinjaFlex was highly conductive with a surface resistance value of 8.5 ohms/sq.; the coated fabric exhibited a uniform surface appearance as measured and observed by using four-probe measurements and scanning electron microscopy, respectively, at 60% PEDOT:PSS. The results of the adhesion test showed that peel strengths of 4160 N/m and 3840 N/m were recorded for polyester and cotton specimens, respectively. No weight loss was recorded following three washing cycles of NinjaFlex. The bending lengths were increased by only a factor of 0.082 and 0.577 for polyester and cotton samples at 0.1-mm thickness, respectively; this remains sufficiently flexible to be integrated into textiles. The prototype device emitted light with a 12-V alternating current power supply.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. X. Jin and K. Gong, J. Ind. Text. 26, 34 (1996).

    Google Scholar 

  2. A.C. Sparavigna, L. Florio, J. Avloni, and A. Henn, Mater. Sci. Appl. 1, 252 (2010).

    Google Scholar 

  3. A. Bedeloglu, A. Demir, Y. Bozkurt, and N.S. Sariciftci, Text. Res. J. 80, 1065 (2010).

    Article  Google Scholar 

  4. D.R. Cairns and G.P. Crawford, in IEEE Proceedings (2005), pp. 1451–1458.

  5. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.M. Tao, Adv. Mater. 26, 5310 (2014).

    Article  Google Scholar 

  6. Y. Ding, M.A. Invernale, and G.A. Sotzing, ACS Appl. Mater. Interfaces 2, 1588 (2010).

    Article  Google Scholar 

  7. D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C.K. Tee, J.A. Bolander, and Z.A. Bao, Chem. Mater. 24, 373 (2012).

    Article  Google Scholar 

  8. C. Yeon, G. Kim, J. Lim, and S. Yun, RSC Adv. 7, 5888 (2017).

    Article  Google Scholar 

  9. C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  Google Scholar 

  10. C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).

    Article  Google Scholar 

  11. M. De Vos, R. Torah, and J. Tudor, Smart Mater. Struct. 25, 045016 (2016).

    Article  Google Scholar 

  12. T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, J. Mater. Chem. 21, 3551 (2011).

    Article  Google Scholar 

  13. L.S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G.T. Schmett, J. Marshall, D. Fogarty, P.E. Burrows, and S.R. Forrest, J. Am. Chem. Soc. 123, 6300 (2001).

    Article  Google Scholar 

  14. G. Longo, A. Pertegás, L. Martínez-Sarti, M. Sessolo, and H.J. Bolink, J. Mater. Chem. 3, 11286 (2015).

    Google Scholar 

  15. L. Gil-Escrig, G. Longo, A. Pertegás, C. Roldán-Carmona, A. Soriano, M. Sessolo, and H.J. Bolink, Chem. Commun. 51, 569 (2015).

    Article  Google Scholar 

  16. L. Akcelrud, Prog. Polym. Sci. 28, 875 (2003).

    Article  Google Scholar 

  17. I.F. Perepichka and D.F. Perepichka, Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 1st ed. (Chichester: John Wiley & Sons, 2009), pp. 255–288.

    Book  Google Scholar 

  18. M. De Vos, R. Torah, M. Glanc-Gostkiewicz, and J. Tudor, J. Disp. Technol. 12, 1757 (2016).

    Article  Google Scholar 

  19. M.P. Aleksandrova, Microelectron. Int. 33, 47 (2016).

    Article  Google Scholar 

  20. B. Hu, D. Li, O. Ala, P. Manandhar, Q. Fan, D. Kasilingam, and P.D. Calvert, Adv. Funct. Mater. 21, 305 (2011).

    Article  Google Scholar 

  21. D. Zhu, X. Lu, and Q. Lu, Langmuir 30, 4671 (2014).

    Article  Google Scholar 

  22. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun. 10, 1555 (2008).

    Article  Google Scholar 

  23. Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).

    Article  Google Scholar 

  24. Y. Xia and J. Ouyang, J. Mater. Chem. 21, 4927 (2011).

    Article  Google Scholar 

  25. A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mate. 21, 4802 (2009).

    Article  Google Scholar 

  26. D.K. Fekety, D.E. Edewaard, A.A.S. Sewall, and R.A. Tyrrell, Hum. Factors 58, 976 (2016).

    Article  Google Scholar 

  27. D. Bradley, Curr. Opin. Solid State Mater. Sci. 1, 789 (1996).

    Article  Google Scholar 

  28. S.C. Yu, C.C. Kwok, W.K. Chan, and C.M. Che, Adv. Mater. 15, 1643 (2003).

    Article  Google Scholar 

  29. J.A. Rogers, Z. Bao, and L. Dhar, Appl. Phys. Lett. 73, 294 (1998).

    Article  Google Scholar 

  30. D.A. Skwarek, M. Sloma, D. Janczak, G. Wroblewski, A. Mlozniak, and M. Jakubowska, Circuit World 40, 13 (2014).

    Article  Google Scholar 

  31. T. Ahn, S.Y. Song, and H.-K. Shim, Macromolecules 33, 6764 (2000).

    Article  Google Scholar 

  32. I. Kazani, C. Hertleer, G. De Mey, A. Schwarz, G. Guxho, and L.V. Langenhove, Fibres Text. East. Eur. 20, 57 (2012).

    Google Scholar 

  33. W.C. Smith, Smart Textile Coatings and Laminates, 1st ed. (New York: Woodhead, 2010), pp. 155–184.

    Book  Google Scholar 

  34. S.M. Bidoki, D. McGorman, D.M. Lewis, M. Clark, G. Horler, and R.E. Miles, AATCC Rev. 5, 11 (2005).

    Google Scholar 

  35. L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, and Y. Cui, Nano Lett. 10, 708 (2010).

    Article  Google Scholar 

  36. N.G. Tanikella, B.T. Wittbrodt, and J.M. Pearce, Addit. Manuf. 15, 40 (2017).

    Article  Google Scholar 

  37. S. Moscato, R. Bahr, T. Le, M. Pasian, M. Bozzi, L. Perregrini, and M.M. Tentzeris, IEEE Antennas Wirel. Propag. Lett. 15, 1506 (2016).

    Article  Google Scholar 

  38. T. Le, B. Song, Q. Liu, R.A. Bahr, S. Moscato, C.P. Wong, and M.M. Tentzeris, in 2015 IEEE 65th Electronic Components and Technology Conference (2015), pp. 981–986.

  39. K. Nate and M.M. Tentzeris, in Electrical Performance of Electronic Packaging and Systems (2015), pp. 171–174.

  40. E. Massoni, L. Silvestri, M. Bozzi, L. Perregrini, G. Alaimo, S. Marconi, and F. Auricchio, in Advanced Materials and Processes for RF and THz Applications IEEE MTT-S International Microwave Workshop Series (2016), pp. 1–4.

  41. K. Bal and V.K. Kothari, Indian J. Fibre Text. Res. 34, 191 (2009).

    Google Scholar 

  42. M.C. Yuen and R.K. Kramer, in ASME 2016 11th International Manufacturing Science and Engineering Conference (2016), p. V002T01A014.

  43. J. Sarik, A.I. Akinwande, and I. Kymissis, IEEE Trans. Educ. 54, 314 (2011).

    Article  Google Scholar 

  44. J. Kido, M. Kimura, and K. Nagai, Science 267, 1332 (1995).

    Article  Google Scholar 

  45. D.R. Vij, Handbook of Electroluminescent Materials (London: IOP Publishing, 2004), pp. 1–21.

    Book  Google Scholar 

  46. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L713 (1988).

    Article  Google Scholar 

  47. C.W. Tang, J. Soc. Inf. Disp. 5, 11 (1997).

    Article  Google Scholar 

  48. M.G. Tadesse, C. Loghin, Y. Chen, L. Wang, D. Catalin, and V. Nierstrasz, Smart Mater. Struct. 26, 065016 (2017).

    Article  Google Scholar 

  49. M. Zahid, E.L. Papadopoulou, A. Athanassiou, and I.S. Bayer, Mater. Des. (2017). https://www.doi.org/10.1016/j.matdes.2017.09.026.

    Google Scholar 

  50. J.D. Menczel and R.B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications, 1st ed. (New York: Wiley, 2014), pp. 241–314.

    Google Scholar 

  51. X. Wang, X. Liu, and C. Hurren, Fabric Testing, ed. J. Hu (New York: Woodhead, 2008), p. 90.

    Chapter  Google Scholar 

  52. N. De Geyter, R. Morent, F. Axisa, E. De Leersnyder, C. Leys, J. Vanfleteren, N. De Smet, M. Rymarczyk-Machal, and E. Schacht, in 3rd International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (2007), pp. 17–20.

  53. G.J. Jorgensen, K.M. Terwilliger, J.A. DelCueto, S.H. Glick, M.D. Kempe, J.W. Pankow, F.J. Pern, and T.J. McMahon, Sol. Energy Mater. Sol. Cells 90, 2739 (2006).

    Article  Google Scholar 

  54. B.T. Poh and H.K. Kwo, J. Appl. Polym. Sci. 105, 680 (2007).

    Article  Google Scholar 

  55. C. Spadaro, C. Dispenza, and C. Sunseri, Int. J. Adhes. Adhes. 28, 211 (2008).

    Article  Google Scholar 

  56. ASTM D, 3359-02: Standard Test Methods for Measuring Adhesion by Tape Test (West Conshohocken, PA: ASTM International, 2002).

  57. E. Hamm, P. Reis, M. LeBlanc, B. Roman, and E. Cerda, Nat. Mater. 7, 386 (2008).

    Article  Google Scholar 

  58. M.J. Shenton, M.C. Lovell-Hoare, and G.C. Stevens, J. Phys. D Appl. Phys. 34, 2754 (2001).

    Article  Google Scholar 

  59. ASTM D, 907-05: Standard Terminology of Adhesives (Annual Book of ASTM Standards, 2005).

Download references

Acknowledgements

This research was supported by Erasmus Mundus, SMDTex Grant No. 2015-1594/001-001-EMJD. The authors would like to thank Desalegn Alemu and Molla Tadesse for SEM image measurement.

Author information

Authors and Affiliations

  1. Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, 501 90, Borås, Sweden

    Melkie Getnet Tadesse, Delia Dumitrescu & Vincent Nierstrasz

  2. Faculty of Textiles, Leather and Industrial Management, Gheorghe Asachi Technical University of Iasi, 53, D. Mangeron Blv., 700050, Iasi, Romania

    Melkie Getnet Tadesse &  Carmen Loghin

  3. The College of Textile and Clothing Engineering, Soochow University, 178 G.J. D. Road, Suzhou, 215021, China

    Melkie Getnet Tadesse, Yan Chen & Lichuan Wang

Authors
  1. Melkie Getnet Tadesse
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Delia Dumitrescu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Carmen Loghin
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Yan Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Lichuan Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Vincent Nierstrasz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Melkie Getnet Tadesse.

Ethics declarations

The authors declare no potential conflicts of interest with respect to this research or authorship of the article.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tadesse, M.G., Dumitrescu, D., Loghin, . et al. 3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications. J. Electron. Mater. 47, 2082–2092 (2018). https://doi.org/10.1007/s11664-017-6015-6

Download citation

  • Received: 05 June 2017

  • Accepted: 07 December 2017

  • Published: 19 December 2017

  • Issue Date: March 2018

  • DOI: https://doi.org/10.1007/s11664-017-6015-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NinjaFlex
  • adhesion test
  • 3D printing
  • electroluminescence
  • TGA
  • emitter
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.