Abstract
Electroluminescence (EL) is the property of a semiconductor material pertaining to emitting light in response to an electrical current or a strong electric field. The purpose of this paper is to develop a flexible and lightweight EL device. Thermogravimetric analysis (TGA) was conducted to observe the thermal degradation behavior of NinjaFlex. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)—PEDOT:PSS—with ethylene glycol (EG) was coated onto polyester fabric where NinjaFlex was placed onto the coated fabric using three-dimensional (3D) printing and phosphor paste, and BendLay filaments were subsequently coated via 3D printing. Adhesion strength and flexibility of the 3D-printed NinjaFlex on textile fabrics were investigated. The TGA results of the NinjaFlex depict no weight loss up to 150°C and that the NinjaFlex was highly conductive with a surface resistance value of 8.5 ohms/sq.; the coated fabric exhibited a uniform surface appearance as measured and observed by using four-probe measurements and scanning electron microscopy, respectively, at 60% PEDOT:PSS. The results of the adhesion test showed that peel strengths of 4160 N/m and 3840 N/m were recorded for polyester and cotton specimens, respectively. No weight loss was recorded following three washing cycles of NinjaFlex. The bending lengths were increased by only a factor of 0.082 and 0.577 for polyester and cotton samples at 0.1-mm thickness, respectively; this remains sufficiently flexible to be integrated into textiles. The prototype device emitted light with a 12-V alternating current power supply.
References
X. Jin and K. Gong, J. Ind. Text. 26, 34 (1996).
A.C. Sparavigna, L. Florio, J. Avloni, and A. Henn, Mater. Sci. Appl. 1, 252 (2010).
A. Bedeloglu, A. Demir, Y. Bozkurt, and N.S. Sariciftci, Text. Res. J. 80, 1065 (2010).
D.R. Cairns and G.P. Crawford, in IEEE Proceedings (2005), pp. 1451–1458.
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.M. Tao, Adv. Mater. 26, 5310 (2014).
Y. Ding, M.A. Invernale, and G.A. Sotzing, ACS Appl. Mater. Interfaces 2, 1588 (2010).
D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C.K. Tee, J.A. Bolander, and Z.A. Bao, Chem. Mater. 24, 373 (2012).
C. Yeon, G. Kim, J. Lim, and S. Yun, RSC Adv. 7, 5888 (2017).
C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).
M. De Vos, R. Torah, and J. Tudor, Smart Mater. Struct. 25, 045016 (2016).
T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, J. Mater. Chem. 21, 3551 (2011).
L.S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G.T. Schmett, J. Marshall, D. Fogarty, P.E. Burrows, and S.R. Forrest, J. Am. Chem. Soc. 123, 6300 (2001).
G. Longo, A. Pertegás, L. Martínez-Sarti, M. Sessolo, and H.J. Bolink, J. Mater. Chem. 3, 11286 (2015).
L. Gil-Escrig, G. Longo, A. Pertegás, C. Roldán-Carmona, A. Soriano, M. Sessolo, and H.J. Bolink, Chem. Commun. 51, 569 (2015).
L. Akcelrud, Prog. Polym. Sci. 28, 875 (2003).
I.F. Perepichka and D.F. Perepichka, Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 1st ed. (Chichester: John Wiley & Sons, 2009), pp. 255–288.
M. De Vos, R. Torah, M. Glanc-Gostkiewicz, and J. Tudor, J. Disp. Technol. 12, 1757 (2016).
M.P. Aleksandrova, Microelectron. Int. 33, 47 (2016).
B. Hu, D. Li, O. Ala, P. Manandhar, Q. Fan, D. Kasilingam, and P.D. Calvert, Adv. Funct. Mater. 21, 305 (2011).
D. Zhu, X. Lu, and Q. Lu, Langmuir 30, 4671 (2014).
W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun. 10, 1555 (2008).
Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).
Y. Xia and J. Ouyang, J. Mater. Chem. 21, 4927 (2011).
A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mate. 21, 4802 (2009).
D.K. Fekety, D.E. Edewaard, A.A.S. Sewall, and R.A. Tyrrell, Hum. Factors 58, 976 (2016).
D. Bradley, Curr. Opin. Solid State Mater. Sci. 1, 789 (1996).
S.C. Yu, C.C. Kwok, W.K. Chan, and C.M. Che, Adv. Mater. 15, 1643 (2003).
J.A. Rogers, Z. Bao, and L. Dhar, Appl. Phys. Lett. 73, 294 (1998).
D.A. Skwarek, M. Sloma, D. Janczak, G. Wroblewski, A. Mlozniak, and M. Jakubowska, Circuit World 40, 13 (2014).
T. Ahn, S.Y. Song, and H.-K. Shim, Macromolecules 33, 6764 (2000).
I. Kazani, C. Hertleer, G. De Mey, A. Schwarz, G. Guxho, and L.V. Langenhove, Fibres Text. East. Eur. 20, 57 (2012).
W.C. Smith, Smart Textile Coatings and Laminates, 1st ed. (New York: Woodhead, 2010), pp. 155–184.
S.M. Bidoki, D. McGorman, D.M. Lewis, M. Clark, G. Horler, and R.E. Miles, AATCC Rev. 5, 11 (2005).
L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, and Y. Cui, Nano Lett. 10, 708 (2010).
N.G. Tanikella, B.T. Wittbrodt, and J.M. Pearce, Addit. Manuf. 15, 40 (2017).
S. Moscato, R. Bahr, T. Le, M. Pasian, M. Bozzi, L. Perregrini, and M.M. Tentzeris, IEEE Antennas Wirel. Propag. Lett. 15, 1506 (2016).
T. Le, B. Song, Q. Liu, R.A. Bahr, S. Moscato, C.P. Wong, and M.M. Tentzeris, in 2015 IEEE 65th Electronic Components and Technology Conference (2015), pp. 981–986.
K. Nate and M.M. Tentzeris, in Electrical Performance of Electronic Packaging and Systems (2015), pp. 171–174.
E. Massoni, L. Silvestri, M. Bozzi, L. Perregrini, G. Alaimo, S. Marconi, and F. Auricchio, in Advanced Materials and Processes for RF and THz Applications IEEE MTT-S International Microwave Workshop Series (2016), pp. 1–4.
K. Bal and V.K. Kothari, Indian J. Fibre Text. Res. 34, 191 (2009).
M.C. Yuen and R.K. Kramer, in ASME 2016 11th International Manufacturing Science and Engineering Conference (2016), p. V002T01A014.
J. Sarik, A.I. Akinwande, and I. Kymissis, IEEE Trans. Educ. 54, 314 (2011).
J. Kido, M. Kimura, and K. Nagai, Science 267, 1332 (1995).
D.R. Vij, Handbook of Electroluminescent Materials (London: IOP Publishing, 2004), pp. 1–21.
C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L713 (1988).
C.W. Tang, J. Soc. Inf. Disp. 5, 11 (1997).
M.G. Tadesse, C. Loghin, Y. Chen, L. Wang, D. Catalin, and V. Nierstrasz, Smart Mater. Struct. 26, 065016 (2017).
M. Zahid, E.L. Papadopoulou, A. Athanassiou, and I.S. Bayer, Mater. Des. (2017). https://www.doi.org/10.1016/j.matdes.2017.09.026.
J.D. Menczel and R.B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications, 1st ed. (New York: Wiley, 2014), pp. 241–314.
X. Wang, X. Liu, and C. Hurren, Fabric Testing, ed. J. Hu (New York: Woodhead, 2008), p. 90.
N. De Geyter, R. Morent, F. Axisa, E. De Leersnyder, C. Leys, J. Vanfleteren, N. De Smet, M. Rymarczyk-Machal, and E. Schacht, in 3rd International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (2007), pp. 17–20.
G.J. Jorgensen, K.M. Terwilliger, J.A. DelCueto, S.H. Glick, M.D. Kempe, J.W. Pankow, F.J. Pern, and T.J. McMahon, Sol. Energy Mater. Sol. Cells 90, 2739 (2006).
B.T. Poh and H.K. Kwo, J. Appl. Polym. Sci. 105, 680 (2007).
C. Spadaro, C. Dispenza, and C. Sunseri, Int. J. Adhes. Adhes. 28, 211 (2008).
ASTM D, 3359-02: Standard Test Methods for Measuring Adhesion by Tape Test (West Conshohocken, PA: ASTM International, 2002).
E. Hamm, P. Reis, M. LeBlanc, B. Roman, and E. Cerda, Nat. Mater. 7, 386 (2008).
M.J. Shenton, M.C. Lovell-Hoare, and G.C. Stevens, J. Phys. D Appl. Phys. 34, 2754 (2001).
ASTM D, 907-05: Standard Terminology of Adhesives (Annual Book of ASTM Standards, 2005).
Acknowledgements
This research was supported by Erasmus Mundus, SMDTex Grant No. 2015-1594/001-001-EMJD. The authors would like to thank Desalegn Alemu and Molla Tadesse for SEM image measurement.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no potential conflicts of interest with respect to this research or authorship of the article.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Tadesse, M.G., Dumitrescu, D., Loghin, . et al. 3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications. J. Electron. Mater. 47, 2082–2092 (2018). https://doi.org/10.1007/s11664-017-6015-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-6015-6
Keywords
- NinjaFlex
- adhesion test
- 3D printing
- electroluminescence
- TGA
- emitter