Skip to main content
Log in

Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With excellent high-temperature stability (up to 1000 K) and favorable electrical properties for thermoelectric application, TiNiSn-based half-Heusler (HH) alloys are expected to be promising thermoelectric materials for the recovery of waste heat in the temperature ranging from 700 K to 900 K. However, their thermal conductivity is always relatively high (5–10 W/mK), making it difficult to further enhance their thermoelectric figure-of-merit (ZT). In the past decade, introducing nano-scale secondary phases into the HH alloy matrix has been proven to be feasible for optimizing the thermoelectric performance of TiNiSn. In this study, a series of TiNiSn-based alloys have been successfully synthesized by a simple solid-state reaction. The content and composition of the heterogeneous phase (TiNi2Sn and Sn) is accurately regulated and, as a result, the thermal conductivity successfully reduced from 4.9 W m−1 K−1 to 3.0 Wm−1 K−1 (750 K) due to multi-scale phonon scattering. Consequently, a ZT value of 0.49 is achieved at 750 K in our TiNiSn-based thermoelectric materials. Furthermore, the thermal stability of TiNiSn alloys is enhanced through reducing the Sn substance phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Tritt, Science 283, 804 (1999).

    Article  Google Scholar 

  2. E.S. Toberer, M. Christensen, B.B. Iversen, and G.J. Snyder, Phys. Rev. B 77, 075203-1 (2008).

    Article  Google Scholar 

  3. Y. Li, C. Cheng, Y. Lei, M. Wang, and R.D. Wan, Dalton Trans. 46, 33 (2017).

    Article  Google Scholar 

  4. A. Bali, J. de Boor, J. Dadda, E. Mueller, and R. Chandra Mallik, RSC Adv. 4, 41425 (2014).

    Article  Google Scholar 

  5. Y.C. Chen, H. Lin, and L.-M. Wu, Inorg. Chem. Front. 3, 1566 (2016).

    Article  Google Scholar 

  6. D. Xie, J. Xu, Z. Liu, G. Liu, H. Shao, X. Tan, H. Jiang, and J. Jiang, J. Electron. Mater. 46, 2746 (2017).

    Article  Google Scholar 

  7. S.-M. Yoon, B. Madavali, Y.-N. Yoon, and S.-J. Hong, Arch. Metall. Mater. 62, 1167 (2017).

    Article  Google Scholar 

  8. F. Ren, R. Schmidt, E.D. Case, and K. An, J. Electron. Mater. 46, 2604 (2017).

    Article  Google Scholar 

  9. L.-J. Zheng, B.-P. Zhang, H. Li, J. Pei, and J.-B. Yu, J. Alloys Compd. 722, 17 (2017).

    Article  Google Scholar 

  10. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  11. B.A. Cook, G.P. Meisner, J. Yang, and C. Uher, IEEE, 64 (1999)

  12. H. Zhao, B. Cao, S. Li, N. Liu, J. Shen, S. Li, J. Jian, L. Gu, Y. Pei, G.J. Snyder, Z. Ren, and X. Chen, Adv. Energy Mater. 7, 1700446 (2017).

    Article  Google Scholar 

  13. T. Katayama, S.W. Kim, Y. Kimura, and Y. Mishima, J. Electron. Mater. 32, 1160 (2003).

    Article  Google Scholar 

  14. X. Shi, L. Chen, and C. Uher, Int. Mater. Rev. 61, 379 (2016).

    Article  Google Scholar 

  15. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. Tritt, Nanomaterials 2, 379 (2012).

    Article  Google Scholar 

  16. Z. Li, C. Xiao, H. Zhu, and Y. Xie, J. Am. Chem. Soc. 138, 14810 (2016).

    Article  Google Scholar 

  17. K.H. Lee and S.W. Kim, J. Korean Ceram. Soc. 54, 75 (2017).

    Article  Google Scholar 

  18. J.W. Sharp, S.J. Poon, and H.J. Goldsmid, Phys. Status Solidi 187, 507 (2015).

    Article  Google Scholar 

  19. C. Fu, Y. Liu, H. Xie, X. Liu, X. Zhao, G. Jeffrey Snyder, J. Xie, and T. Zhu, J. Appl. Phys. 114, 134905 (2013).

    Article  Google Scholar 

  20. L. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu, and X. Zhao, J. Mater. Chem. 22, 16484 (2012).

    Article  Google Scholar 

  21. X. Su, P. Wei, H. Li, W. Liu, Y. Yan, P. Li, C. Su, C. Xie, W. Zhao, P. Zhai, Q. Zhang, X. Tang, and C. Uher, Adv. Mater. 29, 1602013 (2017).

    Article  Google Scholar 

  22. O. Appel, T. Zilber, S. Kalabukhov, O. Beeri, and Y. Gelbstein, J. Mater. Chem. C 3, 11653 (2015).

    Article  Google Scholar 

  23. C.S. Birkel, J.E. Douglas, B.R. Lettiere, G. Seward, N. Verma, Y. Zhang, T.M. Pollock, R. Seshadri, and G.D. Stucky, Phys. Chem. Chem. Phys. 15, 6990 (2013).

    Article  Google Scholar 

  24. M. Matsubara, H. Azuma, and R. Asahi, J. Electron. Mater. 40, 1176 (2011).

    Article  Google Scholar 

  25. C.Q. Liu, H.W. Chen, H. Liu, X.J. Zhao, and J.F. Nie, Acta Mater. 144, 590 (2018).

  26. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, and X. Zhao, Adv. Mater. 29, 1605884 (2017).

    Article  Google Scholar 

  27. C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere, C.E. Mills, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, G.J. Snyder, T.M. Pollock, R. Seshadri, and G.D. Stucky, Chem. Mater. 24, 2558 (2012).

    Article  Google Scholar 

  28. P. Hermet and P. Jund, J. Alloys Compd. 688, 248 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JL., Liu, C., Miao, L. et al. Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials. J. Electron. Mater. 47, 3248–3253 (2018). https://doi.org/10.1007/s11664-017-6013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6013-8

Keywords

Navigation