Abstract
Mg2+δSi0.3Sn0.7 compositions with nominal Mg content of δ = 0, 0.2 are synthesized using a single-step quartz tube reaction method with different heating rates and holding times. The resulting powders are sintered using a uniaxial induction hot press under similar conditions to produce near-dense compacts. The effect of Mg content and processing conditions on the phase formation and its stability are studied using x-ray diffraction measurements, scanning electron microscopy (SEM) with elemental mapping and compositional analysis using energy dispersive spectroscopy (EDS). Results indicate that with sufficient Mg content and shorter synthesis time, the powder remains single phasic; however, prolonged heat treatment during synthesis results in Mg loss and causes the system to become biphasic. Compaction results in single-phase formation in all the specimens. This is attributed to the removal of the low-melting secondary Sn-rich phases present in the system. The decomposition of the specimens depends on the Mg content after the compaction step with a δ around − 0.15 necessary to preserve the single phase. The decomposition also results in Mg enrichment of the matrix (due to formation of elemental Sn), thereby acting as a self-healing mechanism. Annealing the dense products at 773 K for 24 h in static vacuum is carried out. Progressive Mg loss is observed resulting in degradation of the specimen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
L.E. Bell, Science 321, 1457 (2008).
G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).
H. Ning, G.D. Mastrorillo, S. Grasso, B. Du, T. Mori, C. Hu, Xu Ya, K. Simpson, G. Maizza, and M.J. Reece, J. Mater. Chem. A 3, 17426 (2015).
W. Liu, X. Tang, H. Li, J. Sharp, X. Zhou, and C. Uher, Chem. Mater. 23, 5256 (2011).
V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).
T. Dasgupta, C. Stiewe, J. de Boor, and E. Müller, Phys. Stat. Solidi 21, 1250 (2014).
W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).
P. Gao, I. Berkun, R.D. Schmidt, M.F. Luzenski, X. Lu, P.B. Sarac, E.D. Case, and T.P. Hogan, J. Electron. Mater. 43, 1790 (2014).
W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).
W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).
P. Gao, X. Lu, I. Berkun, R.D. Schmidt, E.D. Case, and T.P. Hogan, Appl. Phys. Lett. 105, 202104 (2014).
M. Sondergaard, M. Christensen, K.A. Borup, H. Yin, and B.B. Iversen, J. Electron. Mater. 42, 1417 (2013).
V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics on the Base of Solid Solutions Mg2BIV Compounds.Thermoelectrics. Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Taylor & Francis, 2006), pp. 29-1–29-9.
V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, in Proceedings of the XXIV IEEE International Conference on Thermoelectrics, ICT’05, 2005, p. 189.
H. Gao, T. Zhu, X. Zhao, and Y. Deng, J. Solid State Chem. 220, 157 (2014).
K. Yin, X. Su, Y. Yan, C. Uher, and X. Tang, RSC Adv. 6, 16824 (2016).
S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ailand, and R. Decourt, Acta Mater. 59, 7425 (2011).
P. Bellanger, S. Gorsse, G. Bernard-Granger, C. Navone, A. Redjaimia, and S. Vivès, Acta Mater. 95, 102 (2015).
L. Zheng, X. Zhang, H. Liu, S. Li, Z. Zhou, Q. Lu, J. Zhang, and F. Zhang, J. Alloy. Compd. 671, 452 (2016).
G. Skomedal, A. Burkov, A. Samunin, R. Haugsrud, and H. Middleton, Corros. Sci. 111, 325 (2016).
K. Yin, Q. Zhang, Y. Zheng, X. Su, X. Tang, and C. Uher, J. Mater. Chem. C 3, 10381 (2015).
T. Aizawa and R. Song, Intermetallics 14, 382 (2006).
T. Aizawa, R. Song, and A. Yamamoto, Mater. Trans. 46, 1490 (2005).
T. Aizawa, R. Song, and A. Yamamoto, Mater. Trans. 47, 2006 (1058).
T. Aizawa, Solid-State Synthesis of Magnesium-Based Functional Alloys and Compounds. Trans Tech Publications (2009). ISSN 1422–3597, pp. 1–25.
J. Laugier and B. Bochu, LMGP suite for Windows. 1999. Software available at http://www.ccp14.ac.uk/tutorial/ lmgp/celref.htm.
M. Kubouchi, K. Hayashi, and Y. Miyazaki, J. Alloy. Compd. 617, 389 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goyal, G.K., Dasgupta, T. Effect of Magnesium Content and Processing Conditions on Phase Formation and Stability in Mg2+δSi0.3Sn0.7. J. Electron. Mater. 47, 2066–2072 (2018). https://doi.org/10.1007/s11664-017-6012-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-6012-9