Skip to main content

Advertisement

Log in

Effect of Magnesium Content and Processing Conditions on Phase Formation and Stability in Mg2+δSi0.3Sn0.7

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mg2+δSi0.3Sn0.7 compositions with nominal Mg content of δ = 0, 0.2 are synthesized using a single-step quartz tube reaction method with different heating rates and holding times. The resulting powders are sintered using a uniaxial induction hot press under similar conditions to produce near-dense compacts. The effect of Mg content and processing conditions on the phase formation and its stability are studied using x-ray diffraction measurements, scanning electron microscopy (SEM) with elemental mapping and compositional analysis using energy dispersive spectroscopy (EDS). Results indicate that with sufficient Mg content and shorter synthesis time, the powder remains single phasic; however, prolonged heat treatment during synthesis results in Mg loss and causes the system to become biphasic. Compaction results in single-phase formation in all the specimens. This is attributed to the removal of the low-melting secondary Sn-rich phases present in the system. The decomposition of the specimens depends on the Mg content after the compaction step with a δ around − 0.15 necessary to preserve the single phase. The decomposition also results in Mg enrichment of the matrix (due to formation of elemental Sn), thereby acting as a self-healing mechanism. Annealing the dense products at 773 K for 24 h in static vacuum is carried out. Progressive Mg loss is observed resulting in degradation of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. H. Ning, G.D. Mastrorillo, S. Grasso, B. Du, T. Mori, C. Hu, Xu Ya, K. Simpson, G. Maizza, and M.J. Reece, J. Mater. Chem. A 3, 17426 (2015).

    Article  Google Scholar 

  4. W. Liu, X. Tang, H. Li, J. Sharp, X. Zhou, and C. Uher, Chem. Mater. 23, 5256 (2011).

    Article  Google Scholar 

  5. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  6. T. Dasgupta, C. Stiewe, J. de Boor, and E. Müller, Phys. Stat. Solidi 21, 1250 (2014).

    Google Scholar 

  7. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  8. P. Gao, I. Berkun, R.D. Schmidt, M.F. Luzenski, X. Lu, P.B. Sarac, E.D. Case, and T.P. Hogan, J. Electron. Mater. 43, 1790 (2014).

    Article  Google Scholar 

  9. W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).

    Article  Google Scholar 

  10. W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).

    Article  Google Scholar 

  11. P. Gao, X. Lu, I. Berkun, R.D. Schmidt, E.D. Case, and T.P. Hogan, Appl. Phys. Lett. 105, 202104 (2014).

    Article  Google Scholar 

  12. M. Sondergaard, M. Christensen, K.A. Borup, H. Yin, and B.B. Iversen, J. Electron. Mater. 42, 1417 (2013).

    Article  Google Scholar 

  13. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics on the Base of Solid Solutions Mg2BIV Compounds.Thermoelectrics. Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Taylor & Francis, 2006), pp. 29-1–29-9.

    Google Scholar 

  14. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, in Proceedings of the XXIV IEEE International Conference on Thermoelectrics, ICT’05, 2005, p. 189.

  15. H. Gao, T. Zhu, X. Zhao, and Y. Deng, J. Solid State Chem. 220, 157 (2014).

    Article  Google Scholar 

  16. K. Yin, X. Su, Y. Yan, C. Uher, and X. Tang, RSC Adv. 6, 16824 (2016).

    Article  Google Scholar 

  17. S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ailand, and R. Decourt, Acta Mater. 59, 7425 (2011).

    Article  Google Scholar 

  18. P. Bellanger, S. Gorsse, G. Bernard-Granger, C. Navone, A. Redjaimia, and S. Vivès, Acta Mater. 95, 102 (2015).

    Article  Google Scholar 

  19. L. Zheng, X. Zhang, H. Liu, S. Li, Z. Zhou, Q. Lu, J. Zhang, and F. Zhang, J. Alloy. Compd. 671, 452 (2016).

    Article  Google Scholar 

  20. G. Skomedal, A. Burkov, A. Samunin, R. Haugsrud, and H. Middleton, Corros. Sci. 111, 325 (2016).

    Article  Google Scholar 

  21. K. Yin, Q. Zhang, Y. Zheng, X. Su, X. Tang, and C. Uher, J. Mater. Chem. C 3, 10381 (2015).

    Article  Google Scholar 

  22. T. Aizawa and R. Song, Intermetallics 14, 382 (2006).

    Article  Google Scholar 

  23. T. Aizawa, R. Song, and A. Yamamoto, Mater. Trans. 46, 1490 (2005).

    Article  Google Scholar 

  24. T. Aizawa, R. Song, and A. Yamamoto, Mater. Trans. 47, 2006 (1058).

    Google Scholar 

  25. T. Aizawa, Solid-State Synthesis of Magnesium-Based Functional Alloys and Compounds. Trans Tech Publications (2009). ISSN 1422–3597, pp. 1–25.

  26. J. Laugier and B. Bochu, LMGP suite for Windows. 1999. Software available at http://www.ccp14.ac.uk/tutorial/ lmgp/celref.htm.

  27. M. Kubouchi, K. Hayashi, and Y. Miyazaki, J. Alloy. Compd. 617, 389 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, G.K., Dasgupta, T. Effect of Magnesium Content and Processing Conditions on Phase Formation and Stability in Mg2+δSi0.3Sn0.7. J. Electron. Mater. 47, 2066–2072 (2018). https://doi.org/10.1007/s11664-017-6012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6012-9

Keywords

Navigation