Effect of Substituted Ca on the Thermoelectric and Optoelectronic Properties of NaRh2O4 Under Pressure

Abstract

In this paper, we have used the first principle calculations for investigation of the structural, optoelectronic and thermoelectric properties of NaRh2O4 compound and substituted with Ca onto the Na sites under pressure. The results show that there are two direct band gaps for the NaRh2O4 compound and three indirect band gaps for the CaRh2O4 compound at the top of the Fermi level. The size of the band gaps increases almost linearly with the increase of the pressure up to 37 GPa. The calculated density of states for the CaRh2O4 compound show that the Ca-3p state plays a key role for enhancement of the thermoelectric figure of merit (ZT). We found that the static dielectric function value decreases along the x, y and z directions for the CaRh2O4 compound with the increase of the pressure while it is constant along the x and y directions for the NaRh2O4 compound. The birefringence properties with metallic nature are achieved from the optical spectra. The thermoelectric results show that the maximum peak of the ZT shifts towards the higher value of temperature for the NaRh2O4 compound. The Ca substitution onto the Na sites in the NaRh2O4 compound enhances the ZT value of 0.79 at 250 K.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H.K. Muller-Buschbaum, J. Alloys Compd. 349, 49 (2003).

    Article  Google Scholar 

  2. 2.

    O. Muller and R. Roy, The Major Ternary Structural Families (New York: Springer, 1974), p. 55.

    Google Scholar 

  3. 3.

    X. Wang, Y. Guo, Y. Sun, and K. Yamaura, J. Alloys Compd. 563, 119 (2013).

    Article  Google Scholar 

  4. 4.

    K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 234 (2001).

    Article  Google Scholar 

  5. 5.

    N. Kolev, M.N. Iliev, V.N. Popov, and M. Gospodinov, Solid State Commun. 128, 153 (2003).

    Article  Google Scholar 

  6. 6.

    S. Zouari, L. Ranno, A. Cheikh-Rouhou, M. Pernet, and P. Strobel, J. Mater. Chem. 13, 951 (2003).

    Article  Google Scholar 

  7. 7.

    Y. Nakamura, H. Kakemoto, S. Nishiyama, and H. Irie, J. Solid State Chem. 192, 23 (2012).

    Article  Google Scholar 

  8. 8.

    W. Wong-Ng, T. Luo, W. Xie, W.H. Tang, J.A. Kaduk, Q. Huang, Y. Yan, S. Chattopadhyay, X. Tang, and T. Tritt, J. Solid State Chem. 184, 2159 (2011).

    Article  Google Scholar 

  9. 9.

    K. Yamaura, Q. Huang, M. Moldovan, D.P. Young, A. Sato, Y. Baba, T. Nagai, Y. Matsui, and E. Takayama-Muromachi, Chem. Mater. 17, 359 (2005).

    Article  Google Scholar 

  10. 10.

    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  11. 11.

    K. Georg, H. Madsen, and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  12. 12.

    H.A. Rahnamaye Aliabad, Z. Mojarradi, and B.G. Yalcin, J. Mater. Sci. Mater. Electron. 27, 4887 (2016).

    Article  Google Scholar 

  13. 13.

    S. Bagci, B.G. Yalcin, H.A. Rahnamaye Aliabad, S. Dumana, and B. Salmankurt, RSC Adv. 6, 59527 (2016).

    Article  Google Scholar 

  14. 14.

    H.A. Rahnamaye Aliabad and M. Kheirabadi, Physica B 433, 157 (2014).

    Article  Google Scholar 

  15. 15.

    W. Li, Q.-Y. He, J.-F. Chen, Z.-L. Pan, and T. Wang, Chem. Phys. Lett. 616–617, 196 (2014).

    Article  Google Scholar 

  16. 16.

    H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, and M.A. Saeed, Comput. Mater. Sci. 65, 509 (2012).

    Article  Google Scholar 

  17. 17.

    I. Khan, I. Ahmad, H.A. Rahnamaye Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahnamaye Aliabad, H.A., Hosseini, N. Effect of Substituted Ca on the Thermoelectric and Optoelectronic Properties of NaRh2O4 Under Pressure. Journal of Elec Materi 47, 2009–2016 (2018). https://doi.org/10.1007/s11664-017-6002-y

Download citation

Keywords

  • Thermoelectric
  • optoelectronic
  • pressure
  • (Na, Ca) Rh2O4