Abstract
In this paper, we have used the first principle calculations for investigation of the structural, optoelectronic and thermoelectric properties of NaRh2O4 compound and substituted with Ca onto the Na sites under pressure. The results show that there are two direct band gaps for the NaRh2O4 compound and three indirect band gaps for the CaRh2O4 compound at the top of the Fermi level. The size of the band gaps increases almost linearly with the increase of the pressure up to 37 GPa. The calculated density of states for the CaRh2O4 compound show that the Ca-3p state plays a key role for enhancement of the thermoelectric figure of merit (ZT). We found that the static dielectric function value decreases along the x, y and z directions for the CaRh2O4 compound with the increase of the pressure while it is constant along the x and y directions for the NaRh2O4 compound. The birefringence properties with metallic nature are achieved from the optical spectra. The thermoelectric results show that the maximum peak of the ZT shifts towards the higher value of temperature for the NaRh2O4 compound. The Ca substitution onto the Na sites in the NaRh2O4 compound enhances the ZT value of 0.79 at 250 K.
Similar content being viewed by others
References
H.K. Muller-Buschbaum, J. Alloys Compd. 349, 49 (2003).
O. Muller and R. Roy, The Major Ternary Structural Families (New York: Springer, 1974), p. 55.
X. Wang, Y. Guo, Y. Sun, and K. Yamaura, J. Alloys Compd. 563, 119 (2013).
K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 234 (2001).
N. Kolev, M.N. Iliev, V.N. Popov, and M. Gospodinov, Solid State Commun. 128, 153 (2003).
S. Zouari, L. Ranno, A. Cheikh-Rouhou, M. Pernet, and P. Strobel, J. Mater. Chem. 13, 951 (2003).
Y. Nakamura, H. Kakemoto, S. Nishiyama, and H. Irie, J. Solid State Chem. 192, 23 (2012).
W. Wong-Ng, T. Luo, W. Xie, W.H. Tang, J.A. Kaduk, Q. Huang, Y. Yan, S. Chattopadhyay, X. Tang, and T. Tritt, J. Solid State Chem. 184, 2159 (2011).
K. Yamaura, Q. Huang, M. Moldovan, D.P. Young, A. Sato, Y. Baba, T. Nagai, Y. Matsui, and E. Takayama-Muromachi, Chem. Mater. 17, 359 (2005).
K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).
K. Georg, H. Madsen, and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).
H.A. Rahnamaye Aliabad, Z. Mojarradi, and B.G. Yalcin, J. Mater. Sci. Mater. Electron. 27, 4887 (2016).
S. Bagci, B.G. Yalcin, H.A. Rahnamaye Aliabad, S. Dumana, and B. Salmankurt, RSC Adv. 6, 59527 (2016).
H.A. Rahnamaye Aliabad and M. Kheirabadi, Physica B 433, 157 (2014).
W. Li, Q.-Y. He, J.-F. Chen, Z.-L. Pan, and T. Wang, Chem. Phys. Lett. 616–617, 196 (2014).
H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, and M.A. Saeed, Comput. Mater. Sci. 65, 509 (2012).
I. Khan, I. Ahmad, H.A. Rahnamaye Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rahnamaye Aliabad, H.A., Hosseini, N. Effect of Substituted Ca on the Thermoelectric and Optoelectronic Properties of NaRh2O4 Under Pressure. J. Electron. Mater. 47, 2009–2016 (2018). https://doi.org/10.1007/s11664-017-6002-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-6002-y