Journal of Electronic Materials

, Volume 47, Issue 3, pp 2009–2016 | Cite as

Effect of Substituted Ca on the Thermoelectric and Optoelectronic Properties of NaRh2O4 Under Pressure

Article
  • 61 Downloads

Abstract

In this paper, we have used the first principle calculations for investigation of the structural, optoelectronic and thermoelectric properties of NaRh2O4 compound and substituted with Ca onto the Na sites under pressure. The results show that there are two direct band gaps for the NaRh2O4 compound and three indirect band gaps for the CaRh2O4 compound at the top of the Fermi level. The size of the band gaps increases almost linearly with the increase of the pressure up to 37 GPa. The calculated density of states for the CaRh2O4 compound show that the Ca-3p state plays a key role for enhancement of the thermoelectric figure of merit (ZT). We found that the static dielectric function value decreases along the x, y and z directions for the CaRh2O4 compound with the increase of the pressure while it is constant along the x and y directions for the NaRh2O4 compound. The birefringence properties with metallic nature are achieved from the optical spectra. The thermoelectric results show that the maximum peak of the ZT shifts towards the higher value of temperature for the NaRh2O4 compound. The Ca substitution onto the Na sites in the NaRh2O4 compound enhances the ZT value of 0.79 at 250 K.

Keywords

Thermoelectric optoelectronic pressure (Na, Ca) Rh2O4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.K. Muller-Buschbaum, J. Alloys Compd. 349, 49 (2003).CrossRefGoogle Scholar
  2. 2.
    O. Muller and R. Roy, The Major Ternary Structural Families (New York: Springer, 1974), p. 55.CrossRefGoogle Scholar
  3. 3.
    X. Wang, Y. Guo, Y. Sun, and K. Yamaura, J. Alloys Compd. 563, 119 (2013).CrossRefGoogle Scholar
  4. 4.
    K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 234 (2001).CrossRefGoogle Scholar
  5. 5.
    N. Kolev, M.N. Iliev, V.N. Popov, and M. Gospodinov, Solid State Commun. 128, 153 (2003).CrossRefGoogle Scholar
  6. 6.
    S. Zouari, L. Ranno, A. Cheikh-Rouhou, M. Pernet, and P. Strobel, J. Mater. Chem. 13, 951 (2003).CrossRefGoogle Scholar
  7. 7.
    Y. Nakamura, H. Kakemoto, S. Nishiyama, and H. Irie, J. Solid State Chem. 192, 23 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Wong-Ng, T. Luo, W. Xie, W.H. Tang, J.A. Kaduk, Q. Huang, Y. Yan, S. Chattopadhyay, X. Tang, and T. Tritt, J. Solid State Chem. 184, 2159 (2011).CrossRefGoogle Scholar
  9. 9.
    K. Yamaura, Q. Huang, M. Moldovan, D.P. Young, A. Sato, Y. Baba, T. Nagai, Y. Matsui, and E. Takayama-Muromachi, Chem. Mater. 17, 359 (2005).CrossRefGoogle Scholar
  10. 10.
    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Georg, H. Madsen, and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  12. 12.
    H.A. Rahnamaye Aliabad, Z. Mojarradi, and B.G. Yalcin, J. Mater. Sci. Mater. Electron. 27, 4887 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Bagci, B.G. Yalcin, H.A. Rahnamaye Aliabad, S. Dumana, and B. Salmankurt, RSC Adv. 6, 59527 (2016).CrossRefGoogle Scholar
  14. 14.
    H.A. Rahnamaye Aliabad and M. Kheirabadi, Physica B 433, 157 (2014).CrossRefGoogle Scholar
  15. 15.
    W. Li, Q.-Y. He, J.-F. Chen, Z.-L. Pan, and T. Wang, Chem. Phys. Lett. 616–617, 196 (2014).CrossRefGoogle Scholar
  16. 16.
    H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, and M.A. Saeed, Comput. Mater. Sci. 65, 509 (2012).CrossRefGoogle Scholar
  17. 17.
    I. Khan, I. Ahmad, H.A. Rahnamaye Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran

Personalised recommendations