Skip to main content
Log in

Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration (X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity (\( \sigma \)) at constant temperature showed that \( \sigma \) follows a percolation theory; \( \sigma \propto \left( {X - X_{o} } \right)^{\gamma } \), where X o is the concentration at percolation threshold. The exponent \( \gamma \) was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are − 0.130°C−1, − 0.019°C−1, − 0.0082°C−1, − 0.0094°C−1, and − 0.072°C−1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Kroschwitz, eds., Encyclopedia of Polymer Science and Engineering (New York and Chichester: Wiley, 1987).

    Google Scholar 

  2. G.A. Blokh, “Organic Accelerators and Curing Systems for Elastomers.” Int. Poly. Sci., Tech. Mono 3, Rub. Plast. Res. Ass. of G.B., vol. 2 (1981).

  3. Avraam I. Isayev, eds., Encyclopedia of Polymer Blends, Vol. 3 (New York: Wiley-VCH Verlag, 2016).

    Google Scholar 

  4. F.D. Bostos de Sousa and C.H. Scuracchio, Mater. Res. 18, 791 (2015).

    Article  Google Scholar 

  5. D. Saraydin, Polym. J. 29, 631 (1997).

    Article  Google Scholar 

  6. F. El-Tantawy, Eur. Polym. J. 37, 565 (2001).

    Article  Google Scholar 

  7. H. Tagachi, Physica B 270, 325 (1999).

    Article  Google Scholar 

  8. P. Ghosh and A. Chakrabarti, Eur. Polym. J. 36, 1043 (2000).

    Article  Google Scholar 

  9. J.F. Auchter, T. Schellenberg, and Y. Yoshida, Chemical Economics Handbook: Carbon Black (Menlo Park, CA: SRI Consulting, 2005).

    Google Scholar 

  10. F. El-Tantawy, A. Bakry, and A.R. El-Gohary, Polym. Int. 49, 1670 (2000).

    Article  Google Scholar 

  11. N. Dishovsky, F. El-Tantawy, and R. Dimitrov, Polym. Test. 23, 69 (2004).

    Article  Google Scholar 

  12. F. El-Tantawy and N. Dishovsky, J. Appl. Polym. Sci. 91, 2756 (2004).

    Article  Google Scholar 

  13. M. Madani, J. Polym. Res. 17, 53 (2010).

    Article  Google Scholar 

  14. S. Matchawet, A. Kaesaman, P. Bomlai, and C. Nakason, J. Compos. Mater. 50, 2191 (2016).

    Article  Google Scholar 

  15. N. Abdel-Aal, F. El-Tantawy, A. Al-Hajry, and M. Bououdina, Polym. Compos. 29, 511 (2008).

    Article  Google Scholar 

  16. J. Macutkevic, P. Kuzhir, A. Paddubskaya, S. Maksimenko, J. Banys, A. Celzard, V. Fierro, S. Bistarelli, A. Cataldo, F. Micciulla, and S. Bellucci, J. Appl. Phys. 114, 033707 (2013).

    Article  Google Scholar 

  17. A. Malas and C.K. Das, J. Alloys Compd. 699, 38 (2017).

    Article  Google Scholar 

  18. H.M. Osman, S.A. Abdel Ghani, T.M. Madkour, and A.R. Mohamed, J. Appl. Polym. Sci. 77, 1067 (2000).

    Article  Google Scholar 

  19. G. Schwartz, S. Cervey, and A.J. Marzocca, A Numerical Simulation of the Electrical Resistivity of Carbon Black Filled Rubber. Polymer 41, 6589 (2000).

    Article  Google Scholar 

  20. L. Karasek, B. Meissner, S. Asai, and M. Sumita, Polym. J. 28, 121 (1996).

    Article  Google Scholar 

  21. J. Li and Jang-Kyo Kim, Compos. Sci. Technol. 67, 2114 (2007).

    Article  Google Scholar 

  22. M.T. Connor, S. Roy, T.A. Ezquerra, and F.J. Balta, Calleja. Phys. Rev. B 57, 2286 (1998).

    Article  Google Scholar 

  23. K.P. Sau, T.K. Chaki, and D. Khastgir, J. Appl. Polym. Sci. 71, 887 (1999).

    Article  Google Scholar 

  24. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  Google Scholar 

  25. D. Stauffer, Introduction to Percolation Theory (London: Taylor and Francis, 1987).

    Google Scholar 

  26. J. Janzen, J. Appl. Phys. 46, 966 (1975).

    Article  Google Scholar 

  27. P.S. Clarke, J.W. Orton, and A.J. Guest, Phys. Rev. B 18, 1813 (1978).

    Article  Google Scholar 

  28. J. Yacubowicz and M. Narkis, Polym. Eng. Sci. 26, 1568 (1986).

    Article  Google Scholar 

  29. L. Benguigui, J. Yacubowicz, and M. Narkis, J. Appl. Polym. Sci. Polym. Phys. 25, 127 (1987).

    Article  Google Scholar 

  30. J. Yacubowicz, M. Narkis, and L. Benguigui, Polym. Eng. Sci. 28, 1581 (1988).

    Article  Google Scholar 

  31. A. Abo-Hashem, H.M. Saad, and A.H. Ashor, Plast. Rubber Compos. Process Appl. 21, 125 (1994).

    Google Scholar 

  32. T.A. Azquerra, M. Kulescza, C.S. Cruz, and F.J. Balta-Calleja, Adv. Mater. 2, 597 (1990).

    Article  Google Scholar 

  33. F. El-Tantawy, Eur. Polym. J. 38, 567 (2002).

    Article  Google Scholar 

  34. S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules 36, 5187 (2003).

    Article  Google Scholar 

  35. X. Zhang, Y. Pan, Q. Zheng, and X. Yi, J. Appl. Polym. Sci. 78, 424 (2000).

    Article  Google Scholar 

  36. J. Zhang and S. Feng, J. Appl. Polym. Sci. 90, 3889 (2003).

    Article  Google Scholar 

  37. F. El-Tantawy, J. Appl. Polym. Sci. 97, 1125 (2005).

    Article  Google Scholar 

  38. X. Ding, J. Wang, S. Zhang, J. Wang, and S. Li, Polym. Bull. 73, 369 (2016).

    Article  Google Scholar 

  39. E. Asare, J. Evans, M. Newton, T. Peijs, and E. Bilotti, Mater. Des. 97, 459 (2016).

    Article  Google Scholar 

  40. A.A. Redhwan, A.A. El-Gamal, S.A. Khairy, and H.H. Hassan, J. Thermoplast. Compos. Mater. 29, 92 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (K.A.) wishes to express his appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia, for supporting this work through the research group Project (RG-1436-030). The authors are very grateful to the late Prof. A.M. Lawindy for his kind help in preparing the used samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Alfaramawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzamil, M.A., Alfaramawi, K., Abboudy, S. et al. Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites. J. Electron. Mater. 47, 1665–1672 (2018). https://doi.org/10.1007/s11664-017-5990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5990-y

Keywords

Navigation