Abstract
Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ∼ 2 μm to 30 μm and thicknesses of ∼ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ∼ 23 nm to 73 nm and diameters of ∼ 3.2 μm and ∼ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.
This is a preview of subscription content, access via your institution.
References
K. Shenai, M. Dudley, and R.F. Davis, ECS J. Solid State Sci. Technol. 2, N3055 (2013).
V. Cimalla, J. Pezoldt, and O. Ambacher, J. Phys. D Appl. Phys. 40, 6386 (2007).
A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, and G.H. Jessen, IEEE Electron Device Lett. 37, 902 (2016).
M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016).
H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P.D. Ye, IEEE Electron Device Lett. 38, 103 (2017).
R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, Small 10, 1848 (2014).
W.-Y. Kong, G.-A. Wu, K.-Y. Wang, T.-F. Zhang, Y.-F. Zou, D.-D. Wang, and L.-B. Luo, Adv. Mater. 28, 10725 (2016).
M.R. Lorenz, J.F. Woods, and R.J. Gambino, J. Phys. Chem. Solids 28, 403 (1967).
N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997).
T. Kimoto and J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (Singapore: Wiley, 2014).
J.L. Hudgins, G.S. Simin, E. Santi, and M. Asif Khan, IEEE Trans. Power Electron. 18, 907 (2003).
T. Oishi, Y. Koga, K. Harada, and M. Kasu, Appl. Phys. Express 8, 031101 (2015).
M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Ymakoshi, Appl. Phys. Lett. 100, 013504 (2012).
K.D. Chabak, N. Moser, A.J. Green, D.E. Walker Jr, S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen, Appl. Phys. Lett. 109, 213501 (2016).
M.-F. Yu, M.Z. Atashbar, and X. Chen, IEEE Sens. J 5, 20 (2005).
V.I. Nikolaev, V. Maslov, S.I. Stepanov, A.I. Pechnikov, V. Krymov, I.P. Nikitina, L.I. Guzilova, V.E. Bougrov, and A.E. Romanov, J. Cryst. Growth 457, 132 (2017).
Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Cryst. Res. Technol. 45, 1229 (2010).
R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S.K. Rai, T. Ganguli, S.M. Oak, and S.K. Deb, J. Appl. Phys. 112, 034307 (2012).
Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, J. Cryst. Growth 220, 510 (2000).
N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).
Y. Tomm, J.M. Ko, A. Yoshikawa, and T. Fukuda, Sol. Energy Mater. Sol. Cells 66, 369 (2001).
E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth 270, 420 (2004).
S. Rafique, L. Han, M.J. Tadjer, J.A. Freitas Jr, N.A. Mahadik, and H. Zhao, Appl. Phys. Lett. 108, 182105 (2016).
S. Rafique, L. Han, A.T. Neal, S. Mou, M.J. Tadjer, R.H. French, and H. Zhao, Appl. Phys. Lett. 109, 132103 (2016).
S. Kumar, G. Sarau, C. Tessarek, M.Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, J. Phys. D Appl. Phys. 47, 435101 (2014).
J. Zhang, F. Jiang, Y. Yang, and J. Li, J. Phys. Chem. B 109, 13143 (2005).
S. Rafique, L. Han, C.A. Zorman, and H. Zhao, Cryst. Growth Des. 16, 511 (2016).
S. Ohira, T. Sugawara, K. Nakajima, and T. Shishido, J. Alloys Compd. 402, 204 (2005).
S. Rafique, L. Han, J. Lee, X.-Q. Zheng, C.A. Zorman, P.X.-L. Feng, and H. Zhao, J. Vac. Sci. Technol. B 35, 011208 (2017).
R. Mitdank, S. Dusari, C. Bülow, M. Albrecht, Z. Galazka, and S.F. Fischer, Phys. Status Solidi A 211, 543 (2014).
J. Kim, S. Oh, M.A. Mastro, and J. Kim, Phys. Chem. Chem. Phys. 18, 15760 (2016).
Y. Kwon, G. Lee, S. Oh, J. Kim, S.J. Pearton, and F. Ren, Appl. Phys. Lett. 110, 131901 (2017).
C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, Sci. Rep. 6, 35964 (2016).
Z. Wang, J. Lee, and P.X.-L. Feng, Nat. Commun. 5, 5158 (2014).
K.F. Graff, Wave Motion in Elastic Solids (New York: Dover, 1991).
H. Suzuki, N. Yamaguchi, and H. Izumi, Acoust. Sci. Technol. 30, 348 (2009).
J. Lee, Z. Wang, K. He, J. Shan, and P.X.-L. Feng, ACS Nano 7, 6086 (2013).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zheng, XQ., Lee, J., Rafique, S. et al. Free-Standing β-Ga2O3 Thin Diaphragms. J. Electron. Mater. 47, 973–981 (2018). https://doi.org/10.1007/s11664-017-5978-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-5978-7
Keywords
- β-Gallium oxide (β-Ga2O3)
- suspended nanostructure
- nanomechanics
- resonance
- nanoelectromechanical systems (NEMS)
- thermal annealing