Free-Standing β-Ga2O3 Thin Diaphragms

Abstract

Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ∼ 2 μm to 30 μm and thicknesses of ∼ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ∼ 23 nm to 73 nm and diameters of ∼ 3.2 μm and ∼ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Shenai, M. Dudley, and R.F. Davis, ECS J. Solid State Sci. Technol. 2, N3055 (2013).

    Article  Google Scholar 

  2. 2.

    V. Cimalla, J. Pezoldt, and O. Ambacher, J. Phys. D Appl. Phys. 40, 6386 (2007).

    Article  Google Scholar 

  3. 3.

    A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, and G.H. Jessen, IEEE Electron Device Lett. 37, 902 (2016).

    Article  Google Scholar 

  4. 4.

    M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016).

    Article  Google Scholar 

  5. 5.

    H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P.D. Ye, IEEE Electron Device Lett. 38, 103 (2017).

    Article  Google Scholar 

  6. 6.

    R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, Small 10, 1848 (2014).

    Article  Google Scholar 

  7. 7.

    W.-Y. Kong, G.-A. Wu, K.-Y. Wang, T.-F. Zhang, Y.-F. Zou, D.-D. Wang, and L.-B. Luo, Adv. Mater. 28, 10725 (2016).

    Article  Google Scholar 

  8. 8.

    M.R. Lorenz, J.F. Woods, and R.J. Gambino, J. Phys. Chem. Solids 28, 403 (1967).

    Article  Google Scholar 

  9. 9.

    N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997).

    Article  Google Scholar 

  10. 10.

    T. Kimoto and J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (Singapore: Wiley, 2014).

    Book  Google Scholar 

  11. 11.

    J.L. Hudgins, G.S. Simin, E. Santi, and M. Asif Khan, IEEE Trans. Power Electron. 18, 907 (2003).

    Article  Google Scholar 

  12. 12.

    T. Oishi, Y. Koga, K. Harada, and M. Kasu, Appl. Phys. Express 8, 031101 (2015).

    Article  Google Scholar 

  13. 13.

    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Ymakoshi, Appl. Phys. Lett. 100, 013504 (2012).

    Article  Google Scholar 

  14. 14.

    K.D. Chabak, N. Moser, A.J. Green, D.E. Walker Jr, S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen, Appl. Phys. Lett. 109, 213501 (2016).

    Article  Google Scholar 

  15. 15.

    M.-F. Yu, M.Z. Atashbar, and X. Chen, IEEE Sens. J 5, 20 (2005).

    Article  Google Scholar 

  16. 16.

    V.I. Nikolaev, V. Maslov, S.I. Stepanov, A.I. Pechnikov, V. Krymov, I.P. Nikitina, L.I. Guzilova, V.E. Bougrov, and A.E. Romanov, J. Cryst. Growth 457, 132 (2017).

    Article  Google Scholar 

  17. 17.

    Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Cryst. Res. Technol. 45, 1229 (2010).

    Article  Google Scholar 

  18. 18.

    R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S.K. Rai, T. Ganguli, S.M. Oak, and S.K. Deb, J. Appl. Phys. 112, 034307 (2012).

    Article  Google Scholar 

  19. 19.

    Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, J. Cryst. Growth 220, 510 (2000).

    Article  Google Scholar 

  20. 20.

    N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).

    Article  Google Scholar 

  21. 21.

    Y. Tomm, J.M. Ko, A. Yoshikawa, and T. Fukuda, Sol. Energy Mater. Sol. Cells 66, 369 (2001).

    Article  Google Scholar 

  22. 22.

    E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth 270, 420 (2004).

    Article  Google Scholar 

  23. 23.

    S. Rafique, L. Han, M.J. Tadjer, J.A. Freitas Jr, N.A. Mahadik, and H. Zhao, Appl. Phys. Lett. 108, 182105 (2016).

    Article  Google Scholar 

  24. 24.

    S. Rafique, L. Han, A.T. Neal, S. Mou, M.J. Tadjer, R.H. French, and H. Zhao, Appl. Phys. Lett. 109, 132103 (2016).

    Article  Google Scholar 

  25. 25.

    S. Kumar, G. Sarau, C. Tessarek, M.Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, J. Phys. D Appl. Phys. 47, 435101 (2014).

    Article  Google Scholar 

  26. 26.

    J. Zhang, F. Jiang, Y. Yang, and J. Li, J. Phys. Chem. B 109, 13143 (2005).

    Article  Google Scholar 

  27. 27.

    S. Rafique, L. Han, C.A. Zorman, and H. Zhao, Cryst. Growth Des. 16, 511 (2016).

    Article  Google Scholar 

  28. 28.

    S. Ohira, T. Sugawara, K. Nakajima, and T. Shishido, J. Alloys Compd. 402, 204 (2005).

    Article  Google Scholar 

  29. 29.

    S. Rafique, L. Han, J. Lee, X.-Q. Zheng, C.A. Zorman, P.X.-L. Feng, and H. Zhao, J. Vac. Sci. Technol. B 35, 011208 (2017).

    Article  Google Scholar 

  30. 30.

    R. Mitdank, S. Dusari, C. Bülow, M. Albrecht, Z. Galazka, and S.F. Fischer, Phys. Status Solidi A 211, 543 (2014).

    Article  Google Scholar 

  31. 31.

    J. Kim, S. Oh, M.A. Mastro, and J. Kim, Phys. Chem. Chem. Phys. 18, 15760 (2016).

    Article  Google Scholar 

  32. 32.

    Y. Kwon, G. Lee, S. Oh, J. Kim, S.J. Pearton, and F. Ren, Appl. Phys. Lett. 110, 131901 (2017).

    Article  Google Scholar 

  33. 33.

    C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, Sci. Rep. 6, 35964 (2016).

    Article  Google Scholar 

  34. 34.

    Z. Wang, J. Lee, and P.X.-L. Feng, Nat. Commun. 5, 5158 (2014).

    Article  Google Scholar 

  35. 35.

    K.F. Graff, Wave Motion in Elastic Solids (New York: Dover, 1991).

    Google Scholar 

  36. 36.

    H. Suzuki, N. Yamaguchi, and H. Izumi, Acoust. Sci. Technol. 30, 348 (2009).

    Article  Google Scholar 

  37. 37.

    J. Lee, Z. Wang, K. He, J. Shan, and P.X.-L. Feng, ACS Nano 7, 6086 (2013).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip X.-L. Feng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, XQ., Lee, J., Rafique, S. et al. Free-Standing β-Ga2O3 Thin Diaphragms. Journal of Elec Materi 47, 973–981 (2018). https://doi.org/10.1007/s11664-017-5978-7

Download citation

Keywords

  • β-Gallium oxide (β-Ga2O3)
  • suspended nanostructure
  • nanomechanics
  • resonance
  • nanoelectromechanical systems (NEMS)
  • thermal annealing