Journal of Electronic Materials

, Volume 47, Issue 2, pp 973–981 | Cite as

Free-Standing β-Ga2O3 Thin Diaphragms

  • Xu-Qian Zheng
  • Jaesung Lee
  • Subrina Rafique
  • Lu Han
  • Christian A. Zorman
  • Hongping Zhao
  • Philip X.-L. FengEmail author
Topical Collection: 59th Electronic Materials Conference 2017
Part of the following topical collections:
  1. 59th Electronic Materials Conference 2017


Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ∼ 2 μm to 30 μm and thicknesses of ∼ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ∼ 23 nm to 73 nm and diameters of ∼ 3.2 μm and ∼ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.


β-Gallium oxide (β-Ga2O3suspended nanostructure nanomechanics resonance nanoelectromechanical systems (NEMS) thermal annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Shenai, M. Dudley, and R.F. Davis, ECS J. Solid State Sci. Technol. 2, N3055 (2013).CrossRefGoogle Scholar
  2. 2.
    V. Cimalla, J. Pezoldt, and O. Ambacher, J. Phys. D Appl. Phys. 40, 6386 (2007).CrossRefGoogle Scholar
  3. 3.
    A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, and G.H. Jessen, IEEE Electron Device Lett. 37, 902 (2016).CrossRefGoogle Scholar
  4. 4.
    M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P.D. Ye, IEEE Electron Device Lett. 38, 103 (2017).CrossRefGoogle Scholar
  6. 6.
    R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, Small 10, 1848 (2014).CrossRefGoogle Scholar
  7. 7.
    W.-Y. Kong, G.-A. Wu, K.-Y. Wang, T.-F. Zhang, Y.-F. Zou, D.-D. Wang, and L.-B. Luo, Adv. Mater. 28, 10725 (2016).CrossRefGoogle Scholar
  8. 8.
    M.R. Lorenz, J.F. Woods, and R.J. Gambino, J. Phys. Chem. Solids 28, 403 (1967).CrossRefGoogle Scholar
  9. 9.
    N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997).CrossRefGoogle Scholar
  10. 10.
    T. Kimoto and J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (Singapore: Wiley, 2014).CrossRefGoogle Scholar
  11. 11.
    J.L. Hudgins, G.S. Simin, E. Santi, and M. Asif Khan, IEEE Trans. Power Electron. 18, 907 (2003).CrossRefGoogle Scholar
  12. 12.
    T. Oishi, Y. Koga, K. Harada, and M. Kasu, Appl. Phys. Express 8, 031101 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Ymakoshi, Appl. Phys. Lett. 100, 013504 (2012).CrossRefGoogle Scholar
  14. 14.
    K.D. Chabak, N. Moser, A.J. Green, D.E. Walker Jr, S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen, Appl. Phys. Lett. 109, 213501 (2016).CrossRefGoogle Scholar
  15. 15.
    M.-F. Yu, M.Z. Atashbar, and X. Chen, IEEE Sens. J 5, 20 (2005).CrossRefGoogle Scholar
  16. 16.
    V.I. Nikolaev, V. Maslov, S.I. Stepanov, A.I. Pechnikov, V. Krymov, I.P. Nikitina, L.I. Guzilova, V.E. Bougrov, and A.E. Romanov, J. Cryst. Growth 457, 132 (2017).CrossRefGoogle Scholar
  17. 17.
    Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Cryst. Res. Technol. 45, 1229 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S.K. Rai, T. Ganguli, S.M. Oak, and S.K. Deb, J. Appl. Phys. 112, 034307 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, J. Cryst. Growth 220, 510 (2000).CrossRefGoogle Scholar
  20. 20.
    N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).CrossRefGoogle Scholar
  21. 21.
    Y. Tomm, J.M. Ko, A. Yoshikawa, and T. Fukuda, Sol. Energy Mater. Sol. Cells 66, 369 (2001).CrossRefGoogle Scholar
  22. 22.
    E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth 270, 420 (2004).CrossRefGoogle Scholar
  23. 23.
    S. Rafique, L. Han, M.J. Tadjer, J.A. Freitas Jr, N.A. Mahadik, and H. Zhao, Appl. Phys. Lett. 108, 182105 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Rafique, L. Han, A.T. Neal, S. Mou, M.J. Tadjer, R.H. French, and H. Zhao, Appl. Phys. Lett. 109, 132103 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Kumar, G. Sarau, C. Tessarek, M.Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, J. Phys. D Appl. Phys. 47, 435101 (2014).CrossRefGoogle Scholar
  26. 26.
    J. Zhang, F. Jiang, Y. Yang, and J. Li, J. Phys. Chem. B 109, 13143 (2005).CrossRefGoogle Scholar
  27. 27.
    S. Rafique, L. Han, C.A. Zorman, and H. Zhao, Cryst. Growth Des. 16, 511 (2016).CrossRefGoogle Scholar
  28. 28.
    S. Ohira, T. Sugawara, K. Nakajima, and T. Shishido, J. Alloys Compd. 402, 204 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Rafique, L. Han, J. Lee, X.-Q. Zheng, C.A. Zorman, P.X.-L. Feng, and H. Zhao, J. Vac. Sci. Technol. B 35, 011208 (2017).CrossRefGoogle Scholar
  30. 30.
    R. Mitdank, S. Dusari, C. Bülow, M. Albrecht, Z. Galazka, and S.F. Fischer, Phys. Status Solidi A 211, 543 (2014).CrossRefGoogle Scholar
  31. 31.
    J. Kim, S. Oh, M.A. Mastro, and J. Kim, Phys. Chem. Chem. Phys. 18, 15760 (2016).CrossRefGoogle Scholar
  32. 32.
    Y. Kwon, G. Lee, S. Oh, J. Kim, S.J. Pearton, and F. Ren, Appl. Phys. Lett. 110, 131901 (2017).CrossRefGoogle Scholar
  33. 33.
    C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, Sci. Rep. 6, 35964 (2016).CrossRefGoogle Scholar
  34. 34.
    Z. Wang, J. Lee, and P.X.-L. Feng, Nat. Commun. 5, 5158 (2014).CrossRefGoogle Scholar
  35. 35.
    K.F. Graff, Wave Motion in Elastic Solids (New York: Dover, 1991).Google Scholar
  36. 36.
    H. Suzuki, N. Yamaguchi, and H. Izumi, Acoust. Sci. Technol. 30, 348 (2009).CrossRefGoogle Scholar
  37. 37.
    J. Lee, Z. Wang, K. He, J. Shan, and P.X.-L. Feng, ACS Nano 7, 6086 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer Science, Case School of EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations