First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4

Abstract

Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke–Johnson, and spin–orbit coupling (GGA–SOC) exchange–correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L.K. Lamontagne, G. Laurita, M.W. Gaultois, L. Ghadbeigi, T.D. Sparks, M.E. Gruner, R. Pentcheva, C.M. Brown, and R. Seshadri, Chem. Mater. 28, 3367 (2016).

    Article  Google Scholar 

  2. 2.

    P.L. Smallwood, M.D. Smith, and H.C. zur Loye, J. Cryst. Growth 216, 299 (2000).

    Article  Google Scholar 

  3. 3.

    D. Horwat, M. Dehmas, A. Gutiérrez, J.F. Pierson, A. Anders, F. Soldera, and J.L. Endrino, Chem. Mater. 24, 2429 (2012).

    Article  Google Scholar 

  4. 4.

    H.D. Wasel-Nielenu and R. Hoppe, Z. Anorg. Allg. Chem. 375, 209 (1970).

    Article  Google Scholar 

  5. 5.

    D. Cahen, J.A. Ibers, and R.D. Shannon, Inorg. Chem. 11, 2311 (1972).

    Article  Google Scholar 

  6. 6.

    D. Cahen, J.A. Ibers, and J.B. Wagner, Inorg. Chem. 13, 1377–1388 (1974).

    Article  Google Scholar 

  7. 7.

    S.J. Kim, S. Lemaux, G. Demazeau, J.Y. Kim, and J.H. Choy, J. Am. Chem. Soc. 123, 0413 (2001).

    Google Scholar 

  8. 8.

    S. Sadiq, Z. Ali, I. Ahmad, I. Khan, G. Rehman, M. Sadiq, and N.U. Rehman, Z. Naturforsch. A 70, 815 (2015).

    Article  Google Scholar 

  9. 9.

    R.V. Panin, N.R. Khasanov, A.M. Abakumov, E.V. Antipov, G.V. Tendeloo, and W. Schnelle, J. Solid State Chem. 180, 1566 (2007).

    Article  Google Scholar 

  10. 10.

    J.J. Scheer, A.E.V. Arkel, and R.D. Heyding, Can. J. Chem. 33, 683 (1955).

    Article  Google Scholar 

  11. 11.

    V.M. Wilhelm and R. Hoppe, Z. Anorg. Allg. Chem. 424, 5 (1976).

    Article  Google Scholar 

  12. 12.

    V.M. Wilhelm and R. Hoppe, Z. Anorg. Allg. Chem. 409, 60 (1974).

    Article  Google Scholar 

  13. 13.

    G. Kramer, E. Hagele, N. Wagner, and M. Jansen, Z. Anorg. Allg. Chem. 622, 1027 (1996).

    Article  Google Scholar 

  14. 14.

    G. Demazeau, I. Omeran, M. Pouchard, and M. Hagenmuller, Mater. Res. Bull. 11, 1449 (1976).

    Article  Google Scholar 

  15. 15.

    Y. Wang, D. Walker, B.H. Chen, and B.A. Scott, J. Alloys Compd. 285, 98 (1999).

    Article  Google Scholar 

  16. 16.

    T. Taniguchi, Y. Nagata, T.C. Ozawa, M. Sato, Y. Noro, T. Uchida, and H. Samata, J. Alloys Compd. 373, 67 (2004).

    Article  Google Scholar 

  17. 17.

    O. Muller and R. Roy, Vol. 98 (American Chemical Society, Washington, DC, 1971), p. 28.

  18. 18.

    D.C. Zollner, P.D.G. Thiele, D.M. Mullner, Z. Anorg. Allg. Chem. 443, 11 (1978).

    Article  Google Scholar 

  19. 19.

    Z. Ali, A. Sattar, S.J. Asadabadi, and I. Ahmad, J. Phys. Chem. Solids 86, 114 (2015).

    Article  Google Scholar 

  20. 20.

    K. B. Schwartz, J. Phys. Chem. Solids. 45, I (1984).

  21. 21.

    L. Swette and J. Giner, Inc. Waltham, Massachusetts 02254-9147, Oxygen electrodes for rechargeable alkaline fuel cells. N87-29940.

  22. 22.

    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz (Vienna University of Technology, Austria, 2001).

  23. 23.

    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  24. 24.

    J.P. Perdew, A. Ruzsinzky, G.J. Csonka, O.A. Vydrow, G.E. Scusceria, and L. Aconstantin, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  25. 25.

    D.D. Koelling and B.N. Harmon, J. Phys. C. Solid State Phys. 10, 3110 (1977).

    Article  Google Scholar 

  26. 26.

    K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

    Article  Google Scholar 

  27. 27.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  28. 28.

    T. Charpin, A Package for Calculating Elastic Tensors of Cubic Phase Using WIEN (Paris: Laboratory of Geometrix, 2001).

    Google Scholar 

  29. 29.

    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    Article  Google Scholar 

  30. 30.

    M. Müllner, G. Thiele, and C. Zollner, Z. Anorg. Allg. Chem. 443, 19 (1978).

    Article  Google Scholar 

  31. 31.

    D.V. Suetin, V.V. Annikov, I.R. Shein, and A.L. Ivanovskii, Phys. Status Solidi B 246, 1646 (2009).

    Article  Google Scholar 

  32. 32.

    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).

    Article  Google Scholar 

  33. 33.

    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. B 52, 627 (1995).

    Article  Google Scholar 

  34. 34.

    G. Sinko and N.A. Smirnov, J. Phys. Condens. Matter. 14, 6989 (2002).

    Article  Google Scholar 

  35. 35.

    P.F. Yuan and Z.J. Ding, Phys. B403, 1996 (2008).

    Article  Google Scholar 

  36. 36.

    S.F. Pugh, Philos. Mag. Ser. 45, 823 (1954).

    Article  Google Scholar 

  37. 37.

    L. Kleinman, Phys. Rev. 128, 2614 (1962).

    Article  Google Scholar 

  38. 38.

    A. Bouhemadou, R. Khanate, M. Kharoubi, T. Seddik, A.H. Reshak, and Y.A. Douri, Comput. Mater. Sci. 45, 474 (2009).

    Article  Google Scholar 

  39. 39.

    H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Comput. Mater. Sci. 44, 774 (2008).

    Article  Google Scholar 

  40. 40.

    D.C. Gupta and S.K. Singh, J. Alloys Compd. 515, 26 (2012).

    Article  Google Scholar 

  41. 41.

    Z. Ali, A. Sattar, and S.J. Asadabadi, J. Phys. Chem. Solids 86, 114 (2015).

    Article  Google Scholar 

  42. 42.

    S. Roychowdhury, R. Panigrahi, S. Perumal, and K. Biswas, ACS Energy Lett. 2, 349 (2017).

    Article  Google Scholar 

  43. 43.

    W. Chen, J.H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Perssonand, and A. Jain, J. Mater. Chem. C 4, 4414 (2016).

    Article  Google Scholar 

  44. 44.

    N. Bouarissa, S.A. Siddiqui, A. Hajry, S. Saib, and M. Boucenna, Comput. Mater. Sci. 53, 155 (2014).

    Google Scholar 

  45. 45.

    F. Wooten, Optical Properties of Solids (New York, London: Academic Press, 1972).

  46. 46.

    S. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).

    Article  Google Scholar 

  47. 47.

    L.D. Zhao, J. He, S. Hao, C. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 16327 (2012).

    Article  Google Scholar 

  48. 48.

    K.H.G. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  49. 49.

    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zahid Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Ali, Z., Khan, I. et al. First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4 . Journal of Elec Materi 47, 1871–1880 (2018). https://doi.org/10.1007/s11664-017-5976-9

Download citation

Keywords

  • Ternary palladates
  • ab initio calculations
  • electronic band structure
  • mechanical properties
  • dielectric properties