Advertisement

Journal of Electronic Materials

, Volume 47, Issue 3, pp 1871–1880 | Cite as

First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4

  • Amin Khan
  • Zahid Ali
  • Imad Khan
  • Iftikhar Ahmad
Article

Abstract

Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke–Johnson, and spin–orbit coupling (GGA–SOC) exchange–correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

Keywords

Ternary palladates ab initio calculations electronic band structure mechanical properties dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.K. Lamontagne, G. Laurita, M.W. Gaultois, L. Ghadbeigi, T.D. Sparks, M.E. Gruner, R. Pentcheva, C.M. Brown, and R. Seshadri, Chem. Mater. 28, 3367 (2016).CrossRefGoogle Scholar
  2. 2.
    P.L. Smallwood, M.D. Smith, and H.C. zur Loye, J. Cryst. Growth 216, 299 (2000).CrossRefGoogle Scholar
  3. 3.
    D. Horwat, M. Dehmas, A. Gutiérrez, J.F. Pierson, A. Anders, F. Soldera, and J.L. Endrino, Chem. Mater. 24, 2429 (2012).CrossRefGoogle Scholar
  4. 4.
    H.D. Wasel-Nielenu and R. Hoppe, Z. Anorg. Allg. Chem. 375, 209 (1970).CrossRefGoogle Scholar
  5. 5.
    D. Cahen, J.A. Ibers, and R.D. Shannon, Inorg. Chem. 11, 2311 (1972).CrossRefGoogle Scholar
  6. 6.
    D. Cahen, J.A. Ibers, and J.B. Wagner, Inorg. Chem. 13, 1377–1388 (1974).CrossRefGoogle Scholar
  7. 7.
    S.J. Kim, S. Lemaux, G. Demazeau, J.Y. Kim, and J.H. Choy, J. Am. Chem. Soc. 123, 0413 (2001).Google Scholar
  8. 8.
    S. Sadiq, Z. Ali, I. Ahmad, I. Khan, G. Rehman, M. Sadiq, and N.U. Rehman, Z. Naturforsch. A 70, 815 (2015).CrossRefGoogle Scholar
  9. 9.
    R.V. Panin, N.R. Khasanov, A.M. Abakumov, E.V. Antipov, G.V. Tendeloo, and W. Schnelle, J. Solid State Chem. 180, 1566 (2007).CrossRefGoogle Scholar
  10. 10.
    J.J. Scheer, A.E.V. Arkel, and R.D. Heyding, Can. J. Chem. 33, 683 (1955).CrossRefGoogle Scholar
  11. 11.
    V.M. Wilhelm and R. Hoppe, Z. Anorg. Allg. Chem. 424, 5 (1976).CrossRefGoogle Scholar
  12. 12.
    V.M. Wilhelm and R. Hoppe, Z. Anorg. Allg. Chem. 409, 60 (1974).CrossRefGoogle Scholar
  13. 13.
    G. Kramer, E. Hagele, N. Wagner, and M. Jansen, Z. Anorg. Allg. Chem. 622, 1027 (1996).CrossRefGoogle Scholar
  14. 14.
    G. Demazeau, I. Omeran, M. Pouchard, and M. Hagenmuller, Mater. Res. Bull. 11, 1449 (1976).CrossRefGoogle Scholar
  15. 15.
    Y. Wang, D. Walker, B.H. Chen, and B.A. Scott, J. Alloys Compd. 285, 98 (1999).CrossRefGoogle Scholar
  16. 16.
    T. Taniguchi, Y. Nagata, T.C. Ozawa, M. Sato, Y. Noro, T. Uchida, and H. Samata, J. Alloys Compd. 373, 67 (2004).CrossRefGoogle Scholar
  17. 17.
    O. Muller and R. Roy, Vol. 98 (American Chemical Society, Washington, DC, 1971), p. 28.Google Scholar
  18. 18.
    D.C. Zollner, P.D.G. Thiele, D.M. Mullner, Z. Anorg. Allg. Chem. 443, 11 (1978).CrossRefGoogle Scholar
  19. 19.
    Z. Ali, A. Sattar, S.J. Asadabadi, and I. Ahmad, J. Phys. Chem. Solids 86, 114 (2015).CrossRefGoogle Scholar
  20. 20.
    K. B. Schwartz, J. Phys. Chem. Solids. 45, I (1984).Google Scholar
  21. 21.
    L. Swette and J. Giner, Inc. Waltham, Massachusetts 02254-9147, Oxygen electrodes for rechargeable alkaline fuel cells. N87-29940.Google Scholar
  22. 22.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz (Vienna University of Technology, Austria, 2001).Google Scholar
  23. 23.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
  24. 24.
    J.P. Perdew, A. Ruzsinzky, G.J. Csonka, O.A. Vydrow, G.E. Scusceria, and L. Aconstantin, Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle Scholar
  25. 25.
    D.D. Koelling and B.N. Harmon, J. Phys. C. Solid State Phys. 10, 3110 (1977).CrossRefGoogle Scholar
  26. 26.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).CrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  28. 28.
    T. Charpin, A Package for Calculating Elastic Tensors of Cubic Phase Using WIEN (Paris: Laboratory of Geometrix, 2001).Google Scholar
  29. 29.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).CrossRefGoogle Scholar
  30. 30.
    M. Müllner, G. Thiele, and C. Zollner, Z. Anorg. Allg. Chem. 443, 19 (1978).CrossRefGoogle Scholar
  31. 31.
    D.V. Suetin, V.V. Annikov, I.R. Shein, and A.L. Ivanovskii, Phys. Status Solidi B 246, 1646 (2009).CrossRefGoogle Scholar
  32. 32.
    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).CrossRefGoogle Scholar
  33. 33.
    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. B 52, 627 (1995).CrossRefGoogle Scholar
  34. 34.
    G. Sinko and N.A. Smirnov, J. Phys. Condens. Matter. 14, 6989 (2002).CrossRefGoogle Scholar
  35. 35.
    P.F. Yuan and Z.J. Ding, Phys. B403, 1996 (2008).CrossRefGoogle Scholar
  36. 36.
    S.F. Pugh, Philos. Mag. Ser. 45, 823 (1954).CrossRefGoogle Scholar
  37. 37.
    L. Kleinman, Phys. Rev. 128, 2614 (1962).CrossRefGoogle Scholar
  38. 38.
    A. Bouhemadou, R. Khanate, M. Kharoubi, T. Seddik, A.H. Reshak, and Y.A. Douri, Comput. Mater. Sci. 45, 474 (2009).CrossRefGoogle Scholar
  39. 39.
    H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Comput. Mater. Sci. 44, 774 (2008).CrossRefGoogle Scholar
  40. 40.
    D.C. Gupta and S.K. Singh, J. Alloys Compd. 515, 26 (2012).CrossRefGoogle Scholar
  41. 41.
    Z. Ali, A. Sattar, and S.J. Asadabadi, J. Phys. Chem. Solids 86, 114 (2015).CrossRefGoogle Scholar
  42. 42.
    S. Roychowdhury, R. Panigrahi, S. Perumal, and K. Biswas, ACS Energy Lett. 2, 349 (2017).CrossRefGoogle Scholar
  43. 43.
    W. Chen, J.H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Perssonand, and A. Jain, J. Mater. Chem. C 4, 4414 (2016).CrossRefGoogle Scholar
  44. 44.
    N. Bouarissa, S.A. Siddiqui, A. Hajry, S. Saib, and M. Boucenna, Comput. Mater. Sci. 53, 155 (2014).Google Scholar
  45. 45.
    F. Wooten, Optical Properties of Solids (New York, London: Academic Press, 1972).Google Scholar
  46. 46.
    S. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).CrossRefGoogle Scholar
  47. 47.
    L.D. Zhao, J. He, S. Hao, C. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 16327 (2012).CrossRefGoogle Scholar
  48. 48.
    K.H.G. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  49. 49.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Amin Khan
    • 1
    • 2
  • Zahid Ali
    • 1
    • 2
  • Imad Khan
    • 1
    • 2
  • Iftikhar Ahmad
    • 1
    • 3
  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdara, Lower DirPakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdara, Lower DirPakistan
  3. 3.Abbottabad University of Science and TechnologyAbbottabadPakistan

Personalised recommendations