Skip to main content
Log in

Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (∼ 97.2%) and best microwave dielectric properties with ε r = 7.2, Q × f = 19,300 GHz, and τ f = − 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Varghese, S. Gopinath, and M.T. Sebastian, Mater. Chem. Phys. 137, 811 (2013).

    Article  Google Scholar 

  2. J. Guo, D. Zhou, L. Wang, H. Wang, T. Shao, Z.M. Qi, and X. Yao, Dalton Trans. 42, 1483 (2013).

    Article  Google Scholar 

  3. L.X. Pang, D. Zhou, Z.M. Qi, W.G. Liu, Z.X. Yue, and I.M. Reaney, J. Mater. Chem. C 5, 2695 (2017).

    Article  Google Scholar 

  4. W. Li, L. Fang, Y.H. Sun, Y. Tang, J.W. Chen, and C.C. Li, J. Electron. Mater. 46, 1956 (2017).

    Article  Google Scholar 

  5. N.M. Alford and S.J. Penn, J. Appl. Phys. 80, 5895 (1996).

    Article  Google Scholar 

  6. D. Zhou, H. Wang, L.X. Pang, C.A. Randall, and X. Yao, J. Am. Ceram. Soc. 92, 2242 (2009).

    Article  Google Scholar 

  7. G. Subodh, R. Ratheesh, M.V. Jacob, and M.T. Sebastian, J. Mater. Res. 23, 1551 (2008).

    Article  Google Scholar 

  8. Y. Wang and R.Z. Zuo, J. Eur. Ceram. Soc. 36, 247 (2016).

    Article  Google Scholar 

  9. J. Li, L. Fang, H. Luo, J. Khaliq, Y. Tang, and C.C. Li, J. Eur. Ceram. Soc. 36, 243 (2015).

    Article  Google Scholar 

  10. G.K. Choi, J.R. Kim, H.Y. Sung, and H.K. Sun, J. Eur. Ceram. Soc. 27, 3063 (2007).

    Article  Google Scholar 

  11. N. Joseph, J. Varghese, T. Siponkoski, M. Teirikangas, and M.T. Sebastian, ACS. Sustain. Chem. Eng. 4, 5632 (2016).

    Article  Google Scholar 

  12. C.C. Li, H.C. Xiang, and L. Fang, J. Electron. Mater. 45, 262 (2016).

    Article  Google Scholar 

  13. T. Hamasaki, H. Kuroe, T. Sekine, M. Hase, and H. Kitazawa, J. Phys. Conf. Ser. 150, 42 (2009).

    Google Scholar 

  14. V.N. Moiseenko, Y.I. Bogatirjov, A.M. Jeryemenko, and S.V. Akimov, J. Raman Spectrosc. 31, 539 (2000).

    Article  Google Scholar 

  15. T. Sato, R. Kino, K. Aoki, H. Kuroe, and T. Sekine, JPS. Conf. Proc. 3, 014035 (2014).

    Google Scholar 

  16. E.S. Kim, B.S. Chun, R. Freer, and R.J. Cemik, J. Eur. Ceram. Soc. 30, 1731 (2010).

    Article  Google Scholar 

  17. C.F. Tseng, J. Eur. Ceram. Soc. 35, 383 (2015).

    Article  Google Scholar 

  18. A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593 (1963).

    Article  Google Scholar 

  19. D.W. Kim, I.T. Kim, B. Park, K.S. Hong, and J.H. Kim, J. Mater. Res. 16, 1465 (2001).

    Article  Google Scholar 

  20. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  Google Scholar 

  21. S.H. Yoon, D.W. Kim, S.Y. Cho, and H.K. Sun, J. Eur. Ceram. Soc. 26, 2051 (2006).

    Article  Google Scholar 

  22. D. Zhou, C.A. Randall, L. Pang, H. Wang, and J. Guo, J. Am. Ceram. Soc. 94, 348 (2011).

    Article  Google Scholar 

  23. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  Google Scholar 

  24. N.K. James and R. Ratheesh, J. Am. Ceram. Soc. 93, 931 (2010).

    Article  Google Scholar 

  25. D. Zhou, L.X. Pang, J. Guo, Y. Wu, G.Q. Zhang, W. Dai, H. Wang, and X. Yao, J. Am. Ceram. Soc. 94, 2800 (2011).

    Article  Google Scholar 

  26. Y.C. Chen and M.Z. Weng, J. Mater. Sci. Mater. Electron. 26, 3502 (2015).

    Article  Google Scholar 

  27. L.X. Pang, G.B. Sun, and D. Zhou, J. Mater. Sci. Lett. 65, 164 (2011).

    Article  Google Scholar 

  28. H. Xi, D. Zhou, H. Xie, and W. Li, Mater. Lett. 142, 221 (2015).

    Article  Google Scholar 

  29. H.H. Xi, D. Zhou, H.D. Xie, and W.B. Li, Ceram. Int. 41, 278 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 21561008, 51502047, and 21761008), Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 2015GXNSFFA139003, 2016GXNSFBA380134, and 2016GXNSFAA380018), Project of Scientific Research and Technical Exploitation Program of Guilin (2016010702-2), Innovation Project of Guangxi Graduate Education (YCBZ2017052), and Project of Department of Science and Technology of Guangxi (2015AA07036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunchun Li or Liang Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Li, C., Sun, Y. et al. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum. J. Electron. Mater. 47, 1003–1008 (2018). https://doi.org/10.1007/s11664-017-5957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5957-z

Keywords

Navigation