Skip to main content
Log in

Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transparent glasses have a large number of applications in the industry of electronics as well as optical devices. xMnO2–(25–x) Bi2O3–75H3BO3 (0 ≤ x ≤ 1.5 mol.%) transparent glasses have been prepared via melt-quench technique and characterized using dc electrical measurements, and by analyzing x-ray diffraction and Fourier transform infrared (FTIR) spectra. These characteristics were examined to understand the role of modifier oxides, i.e., Bi2O3 and MnO2 in the B2O3 glass network. Adding MnO2 into a glass network causes structural changes, which are responsible for any variations in electrical characteristics of bismuth borate glasses. Manganese bismuth borate glasses (MBBG) show Ohmic conduction at low fields; however, glasses with higher manganese content seem to conduct through bulk limited Poole–Frenkel mechanism. FTIR spectroscopy analyses depict the presence of BO3 and BO4 groups along with B-O-B and Bi-O-Bi bonding vibrations. Glasses with higher MnO2 content also show Mn-O bond vibrations. The reduction of BO4 groups and increase of BO3 units lead to the formation of non-bridging oxygens (NBOs) which are responsible for the variations in the electrical properties of these glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Sabri, A.K. Yahya, R. Abd-Shukor, and M.K. Talari, J. Non Cryst. Solids 444, 55 (2016).

    Article  Google Scholar 

  2. K.N. Reddy and B.S. Reddy, J. Eng. Res. Appl. 5, 61 (2015).

    Google Scholar 

  3. C. Gautam, A.K. Yadav, and A.K. Singh, ISRN Ceram. 2012, 1 (2012).

    Article  Google Scholar 

  4. V. Dimitrov and T. Komatsu, J. Chem. Technol. Metall. 48, 549 (2013).

    Google Scholar 

  5. G. Kaur, O.P. Pandey, and K. Singh, J. Non-Cryst. Solids 358, 2589 (2012).

    Article  Google Scholar 

  6. A.M. Abdelghany, M.A. Ouis, M.A. Azooz, H.A. El Batal, and G.T. El-Bassyouni, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 126 (2016).

    Article  Google Scholar 

  7. S. Yusub, T. Narendrudu, S. Suresh, and D.K. Rao, J. Mol. Struct. 1076, 136 (2014).

    Article  Google Scholar 

  8. S. Yusub, P.S. Rao, and D.K. Rao, J. Alloys Compd. 663, 708 (2016).

    Article  Google Scholar 

  9. L. Li, G. Li, Y. Wang, F. Liao, and J. Lin, Chem. Mater. 17, 4174 (2005).

    Article  Google Scholar 

  10. A. Bajaj, A. Khanna, B. Chen, J.G. Longstaffe, U.W. Zwanziger, J.W. Zwanziger, Y. Gomez, and F. Gonzalez, J. Non Cryst. Solids 355, 45 (2009).

    Article  Google Scholar 

  11. I.I. Opera, H. Hesse, and K. Betzler, Opt. Mater. 26, 235 (2004).

    Article  Google Scholar 

  12. Y. Cheng, H. Xiao, W. Guo, and W. GuO, Thermochim. Acta 444, 173 (2006).

    Article  Google Scholar 

  13. J. Fu, Phys. Chem. Glasses 37, 84 (1996).

    Google Scholar 

  14. M.A. Marzouk, F.H. ElBatal, W.H. Eisa, and N.A. Ghoneim, J. Non-Cryst. Solids 387, 155 (2014).

    Article  Google Scholar 

  15. Y. Dimitriev and V. Michailova, J. Sci. Lett. 9, 1251 (1990).

    Article  Google Scholar 

  16. S. Hazra, S. Mandal, and A. Ghosh, Phys. Rev. B 56, 8021 (1997).

    Article  Google Scholar 

  17. C. Stehle, C. Vira, D. Hogan, S. Feller, and M.A. Affatigato, Phys. Chem. Glasses 39, 83 (1998).

    Google Scholar 

  18. F.H. El Batal, M.A. Azooz, and F.M. Ezzel Din, Phys. Chem. Glasses 43, 260 (2002).

    Google Scholar 

  19. N. Singh, K.J. Singh, K. Singh, and H. Singh, Nucl. Inst. Methods Phys. Res. B 225, 305 (2004).

    Article  Google Scholar 

  20. M.Y. Nadeem, A. Javed, and M.F. Wasiq, J. Braz. Phys. 39, 280 (2009).

    Article  Google Scholar 

  21. A.K. Jonscher, Thin Solid Films 1, 213 (1967).

    Article  Google Scholar 

  22. J. Frenkel, Phys. Rev. 54, 647 (1938).

    Article  Google Scholar 

  23. M.T. Bhatti, A.M. Rana, and A.F. Khan, Mater. Chem. Phys. 84, 126 (2004).

    Article  Google Scholar 

  24. R.H. Doremus, Glass Science (New York: Wiley, 1973).

    Google Scholar 

  25. V.S. Kushwaha and A. Kumar, J. Optoelectron. Adv. Matter. 6, 1159 (2004).

    Google Scholar 

  26. I. Ardelean and M. Toderes, J. Optoelectron. Adv. Mater. 8, 1118 (2006).

    Google Scholar 

  27. I. Ardelean, S. Cora, R.C. Lucacel, and O. Hulpus, Solid State Science 7, 1438 (2005).

    Article  Google Scholar 

  28. A. Thulasiramudu and S. Buddhudu, J. Quant. Spectrosc. Radiat. Transf. 102, 212 (2006).

    Article  Google Scholar 

  29. M.S. Reddy, G.M. Krishna, and N. Veeraiah, J. Phys. Chem. Solids 67, 789 (2006).

    Article  Google Scholar 

  30. G. Lakshminarayana and S. Buddhudu, Spectrochim. Acta A 63, 295 (2006).

    Article  Google Scholar 

  31. C. Rayasree, P.M.V. Teja, K.V.R. Murthy, and D.K. Rao, Phys. B 406, 4366 (2011).

    Article  Google Scholar 

  32. M. Shapaan and F.M. Ebrahim, Phys. B 405, 3217 (2010).

    Article  Google Scholar 

  33. K.I. Cho, S.H. Lee, D.W. Shin, and Y.K. Sun, Electrochim. Acta 52, 1576 (2006).

    Article  Google Scholar 

  34. M. Abid, M. Et-tabirou, and M. Taibi, Mater. Sci. Eng., B 97, 20 (2003).

    Article  Google Scholar 

  35. M.H. Shaaban and A.A. Ali, J. Mater. Sci.: Mater. Electron. 43, 4023 (2014).

    Google Scholar 

  36. S.R. Rejisha, P.S. Anjana, and N. Gopakumar, J. Mater. Sci.: Mater. Electron. 27, 5475 (2016).

    Google Scholar 

  37. K.I. Cho, S.H. Lee, K.H. Cho, D.W. Shin, and Y.K. Sun, J. Power Source 163, 223 (2006).

    Article  Google Scholar 

  38. J.S. Jen, M.R. Kalinowski, and J. Non-Cryst, Solids 38&39, 21 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umair Nissar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissar, U., Ahmad, J., Rana, A.M. et al. Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems. J. Electron. Mater. 47, 1421–1430 (2018). https://doi.org/10.1007/s11664-017-5943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5943-5

Keywords

Navigation