Optical and Electrical Properties of Sn-Doped Zinc Oxide Single Crystals

Abstract

Sn dopant in ZnO may significantly improve the n-type conductivity of ZnO through a characteristic double effect. However, studies on bulk Sn-doped ZnO are rare, and the effect of Sn doping on the optoelectronic properties of bulk ZnO is not well understood. In this work, the effect of Sn doping on the optical and electrical properties of ZnO bulk single crystals was investigated through optical absorption spectroscopy, Hall-effect measurements, and thermoluminescence (TL) spectroscopy. Undoped and Sn-doped ZnO single crystals were grown by chemical vapor transport method and characterized by x-ray diffraction analysis. The Sn doping level in the crystals was evaluated by inductively coupled plasma mass spectroscopy measurements. Hall-effect measurements revealed an increase in conductivity and carrier concentration with increasing Sn doping, while TL measurements identified a few donor species in the crystals with donor ionization energy ranging from 35 meV to 118 meV. Increasing Sn doping was also associated with a color change of single crystals from colorless to dark blue.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Arif, O. Belahssen, S. Gareh, and S. Benramache, J. Semicond. 36, 013001 (2015).

    Article  Google Scholar 

  2. 2.

    N. Kamarulzaman, M.F. Kasim, and R. Rusdi, Nanoscale Res. Lett. 10, 346 (2015).

    Article  Google Scholar 

  3. 3.

    F.A. Selim, M.C. Tarun, D.E. Wall, L.A. Boatner, and M.D. McCluskey, Appl. Phys. Lett. 99, 202109 (2011).

    Article  Google Scholar 

  4. 4.

    V. Srikant and D.R. Clarke, J. Appl. Phys. 83, 5447 (1998).

    Article  Google Scholar 

  5. 5.

    P.R. Chalker, P.A. Marshall, S. Romani, J.W. Roberts, S.J.C. Irvine, D.A. Lamb, A.J. Clayton, and P.A. Williams, J. Vac. Sci. Technol. A 31, 01A120 (2013).

    Article  Google Scholar 

  6. 6.

    Y. Geng, L. Guo, S.S. Xu, Q.Q. Sun, S.J. Ding, H.L. Lu, and D.W. Zhang, J. Phys. Chem. C 115, 12317 (2011).

    Article  Google Scholar 

  7. 7.

    N.P. Dasgupta, N. Sebastian, L. Wonyoung, O. Trejo, J.R. Lee, and F.B. Prinz, Chem. Mater. 22, 4769 (2010).

    Article  Google Scholar 

  8. 8.

    G. Luka, T.A. Krajewski, B.S. Witkowski, G. Wisz, I.S. Virt, E. Guziewicz, and M. Godlewski, J. Mater. Sci. Mater. Electron. 22, 1810 (2011).

    Article  Google Scholar 

  9. 9.

    T. Nam, C.W. Lee, H.J. Kim, and H. Kim, Appl. Surf. Sci. 295, 260 (2014).

    Article  Google Scholar 

  10. 10.

    J.L. Lyons, A. Janotti, and C.G. Van de Walle, Phys. Rev. B 80, 205113 (2009).

    Article  Google Scholar 

  11. 11.

    A.K. Das, P. Misra, and L.M. Kukreja, J. Phys. D Appl. Phys. 42, 165405 (2009).

    Article  Google Scholar 

  12. 12.

    S. Aksoy, Y.Y. Çağlar, I. Saliha, and M. Caglar, Opt. Appl. 40, 7 (2010).

    Google Scholar 

  13. 13.

    A.D. Acharya, S. Moghe, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, D.M. Phase, and V. Ganesan, J. Mol. Struct. 1022, 8 (2012).

    Article  Google Scholar 

  14. 14.

    N. Chahmat, A. Haddad, A. Ain-Souya, R. Ganfoudi, N. Attaf, and M. Ghers, J. Mod. Phys. 3, 1781 (2012).

    Article  Google Scholar 

  15. 15.

    M. Ajili, M. Castagné, and N.K. Turki, Superlattices Microstruct. 53, 213 (2013).

    Article  Google Scholar 

  16. 16.

    C. Manoharan, G. Pavithra, S. Dhanapandian, P. Dhamodaran, and B. Shanthi, Spectrochim. Acta Part A 141, 292 (2015).

    Article  Google Scholar 

  17. 17.

    E.S. Kumar, F. Mohammadbeigi, L.A. Boatner, and S.P. Watkins, J. Lumin. 176, 47 (2016).

    Article  Google Scholar 

  18. 18.

    C.R. Varney, D.T. Mackay, A. Pratt, S.M. Reda, and F.A. Selim, J. Appl. Phys. 111, 063505 (2012).

    Article  Google Scholar 

  19. 19.

    D.T. Mackay, C.R. Varney, J. Buscher, and F.A. Selim, J. Appl. Phys. 112, 023522 (2012).

    Article  Google Scholar 

  20. 20.

    A.J.J. Bos, Nucl. Instrum. Methods Phys. Res. Sect. B 184, 3 (2001).

    Article  Google Scholar 

  21. 21.

    S.M. Reda, C.R. Varney, and F.A. Selim, Results Phys. 2, 123 (2012).

    Article  Google Scholar 

  22. 22.

    J. Ji, L.A. Boatner, and F.A. Selim, Appl. Phys. Lett. 105, 041102 (2014).

    Article  Google Scholar 

  23. 23.

    G.E. Jellison Jr and L.A. Boatner, Phys. Rev. B 58, 3586 (1998).

    Article  Google Scholar 

  24. 24.

    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, and S.J. Chua, J. Appl. Phys. 98, 013505 (2005).

    Article  Google Scholar 

  25. 25.

    R. Gonzalez-Hernandez, A.I. Martinez, C. Falcony, A.A. Lopez, M.I. Pech-Canul, and H.M. Hdz-Garcia, Mater. Lett. 64, 1493 (2010).

    Article  Google Scholar 

  26. 26.

    L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, and C.Y. Kong, J. Alloys Compd. 484, 575 (2009).

    Article  Google Scholar 

  27. 27.

    W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Pingan, and F. Jiamo, Appl. Catal. B 39, 269 (2002).

    Article  Google Scholar 

  28. 28.

    A. Hagfeldt and M. Graeztel, Chem. Rev. 95, 49 (1995).

    Article  Google Scholar 

  29. 29.

    Z. Zhang, V. Quemener, C.-H. Lin, B.G. Svensson, and L.J. Brillson, Appl. Phys. Lett. 103, 072107 (2013).

    Article  Google Scholar 

  30. 30.

    J. Ji, A.M. Colosimo, W. Anwand, L.A. Boatner, A. Wagner, P.S. Stepanov, T.T. Trinh, M.O. Liedke, R. Krause-Rehberg, T.E. Cowan, and F.A. Selim, Sci. Rep. 6, 31238 (2016).

    Article  Google Scholar 

  31. 31.

    D.J. Winarski, W. Anwand, A. Wagner, P. Saadatkia, F.A. Selim, M. Allen, B. Wenner, K. Leedy, J. Allen, S. Tetlak, and D.C. Look, AIP Adv. 6, 095004 (2016).

    Article  Google Scholar 

  32. 32.

    A.R. Hutson, Phys. Rev. 108, 222 (1957).

    Article  Google Scholar 

  33. 33.

    E.V. Lavrov, F. Herklotz, and J. Weber, Phys. Rev. B 79, 165210 (2009).

    Article  Google Scholar 

  34. 34.

    E.V. Lavrov, Phys. B 404, 5075 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Cordula Mora for providing funding for this work through CURS award 2016, Bowling Green State University. Part of the work was funded by the National Science Foundation (Grant DMR1359523). Research at the Oak Ridge National Laboratory for two authors (L.A.B. and G.E.J.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. A. Selim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haseman, M.S., Saadatkia, P., Warfield, J.T. et al. Optical and Electrical Properties of Sn-Doped Zinc Oxide Single Crystals. Journal of Elec Materi 47, 1497–1504 (2018). https://doi.org/10.1007/s11664-017-5942-6

Download citation

Keywords

  • Semiconducting oxides
  • Sn-doped ZnO
  • Sn concentration
  • thermoluminescence spectroscopy
  • color center