Skip to main content
Log in

Role of Boron Element on the Electronic Properties of α-Nb5Si3: A First-Principle Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transition metal silicides (TMSis) are attracting increasing interest from the microelectronics and nanoelectronic industries. In this paper, we use the first-principles method to investigate the B-doped mechanism and the influence of B on the electronic properties of α-Nb5Si3. The calculated results show that B-doped Nb5Si3 is thermodynamically stable at the ground state. The calculated electronic structure shows that the thermodynamically stable B-doped Nb5Si3 is attributed to the 3D-network B-Si bonds and B-Nb bond. In particular, B element prefers to occupy B -IT4 site in comparison to other sites. Moreover, the calculated band structure indicates that Nb5Si3 exhibits metallic behavior at the ground state. We find that B-doping can improve charge overlap between conduction band and the valence band, which effectively improves the electronic properties of Nb5Si3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.Y.N. Truong, D. Berthebaud, F. Gascoin, and H. Kleinke, J. Electron. Mater. 44, 3603 (2015).

    Article  Google Scholar 

  2. Y. Sadia, N. Madar, I. Kaler, and Y. Gelbstein, J. Electron. Mater. 44, 1637 (2015).

    Article  Google Scholar 

  3. W. Li, D. Ishikawa, J. Hu, and H. Tatsuoka, J. Electron. Mater. 43, 1487 (2014).

    Article  Google Scholar 

  4. L. Wu, J. Yang, X. Zhou, J. Tang, Y. Ren, and Y. Nie, ACS. Appl. Mater. Interfaces 8, 16862 (2016).

    Article  Google Scholar 

  5. Y. Pan, S. Wang, P. Mao, and C. Jin, Vacuum 141, 170 (2017).

    Article  Google Scholar 

  6. T.P. Kaloni, J. Phys. Chem. C 118, 25200 (2014).

    Article  Google Scholar 

  7. C. Cui, J. Zhang, L. Liu, and H. Fu, J. Mater. Sci. Technol. 26, 65 (2010).

    Article  Google Scholar 

  8. J.M. Mcenaney and R.E. Schaak, Inorg. Chem. 54, 707 (2015).

    Article  Google Scholar 

  9. Y. Pan and W.M. Guan, Phys. Chem. Chem. Phys. 19, 19427 (2017).

    Article  Google Scholar 

  10. Y.L. Chueh, M.T. Ko, L.J. Chou, L.J. Chen, C.S. Wu, and C.D. Chen, Nano Lett. 6, 1637 (2006).

    Article  Google Scholar 

  11. A.L. Schmitt, J.M. Higgins, J.R. Szczech, and S. Jin, J. Mater. Chem. A. 20, 223 (2010).

    Article  Google Scholar 

  12. L.J. Chou, Y.L. Chueh, and M.T. Ko, Thin Solid Films 515, 8109 (2007).

    Article  Google Scholar 

  13. Y. Nakamura, S. Amari, N. Naruse, Y. Mera, K. Maeda, and M. Lchikawa, Cryst. Growth Des. 8, 3019 (2008).

    Article  Google Scholar 

  14. C.M. Chang, Y.C. Chang, Y.A. Chung, C.Y. Lee, and L.J. Chen, J. Phys. Chem. C 113, 17720 (2009).

    Article  Google Scholar 

  15. H.K. Lin, Y.F. Tzeng, C.H. Wang, N.H. Tai, I.N. Lin, C.Y. Lee, and H.T. Chiu, Chem. Mater. 20, 2429 (2008).

    Article  Google Scholar 

  16. B. Das, B. Balasubramanian, P. Manchanda, P. Mukherjee, R. Skomski, G.C. Hadjipanayis, and D.J. Sellmyer, Nano Lett. 16, 1132 (2016).

    Article  Google Scholar 

  17. S.Y. Liu, J.X. Shang, F.H. Wang, S. Liu, Y. Zhang, and D. Li, J. Chem. Phys. 138, 014708 (2013).

    Article  Google Scholar 

  18. L. Su, O.L. Steffes, H. Zhang, and J.H. Perepezko, Appl. Surf. Sci. 337, 38 (2015).

    Article  Google Scholar 

  19. S. Binbin, F. Peizhong, W. Jianzhong, G. Yuan, W. Guanzhi, W. Xiaohong, and A. Farid, Corros. Sci. 85, 311 (2014).

    Article  Google Scholar 

  20. C.S. Tiwary, S. Kashyap, and K. Chattopadhyay, Mater. Sci. Technol. Lond. 29, 702 (2013).

    Article  Google Scholar 

  21. K. Hagihara, H. Araki, T. Ikenishi, and T. Nakano, Acta Mater. 107, 196 (2016).

    Article  Google Scholar 

  22. S. Shi, L. Zhu, L. Jia, H. Zhang, and Z. Sun, Comput. Mater. Sci. 108, 121 (2015).

    Article  Google Scholar 

  23. Y. Chen, J.X. Shang, and Y. Zhang, Phys. Rev. B 76, 184204 (2007).

    Article  Google Scholar 

  24. W. Xu, J. Han, C. Wang, Y. Zhou, Y. Wang, Y. Kang, B. Wen, X. Liu, and Z. Liu, Intermetallics 46, 72 (2014).

    Article  Google Scholar 

  25. Y. Qiao, Z. Shen, and X. Guo, Corros. Sci. 93, 126 (2015).

    Article  Google Scholar 

  26. Z. Sun, X. Guo, and B. Guo, Int. J. Refract. Met. H 51, 243 (2015).

    Article  Google Scholar 

  27. J. Wu, W. Wang, and C. Zhou, Corros. Sci. 87, 421 (2014).

    Article  Google Scholar 

  28. S.V. Meschel and O.J. Kleppa, J. Alloys Compd. 274, 193 (1998).

    Article  Google Scholar 

  29. Y. Pan, Y. Lin, H. Wang, and C. Zhang, Mater. Des. 86, 259 (2015).

    Article  Google Scholar 

  30. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Mat. 14, 2717 (2002).

    Article  Google Scholar 

  31. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  32. Y. Pan, Y. Lin, Q. Xue, C. Ren, and H. Wang, Mater. Des. 89, 676 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Pan or Yuanhua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Lin, Y. Role of Boron Element on the Electronic Properties of α-Nb5Si3: A First-Principle Study. J. Electron. Mater. 47, 1786–1791 (2018). https://doi.org/10.1007/s11664-017-5941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5941-7

Keywords

Navigation