Advertisement

Journal of Electronic Materials

, Volume 47, Issue 2, pp 955–960 | Cite as

DLTS Analysis and Interface Engineering of Solution Route Fabricated Zirconia Based MIS Devices Using Plasma Treatment

  • Arvind Kumar
  • Sandip Mondal
  • K. S. R. Koteswara Rao
Topical Collection: 59th Electronic Materials Conference 2017
  • 51 Downloads
Part of the following topical collections:
  1. 59th Electronic Materials Conference 2017

Abstract

In this work, we have fabricated low-temperature sol–gel spin-coated and oxygen (O2) plasma treated ZrO2 thin film-based metal–insulator–semiconductor devices. To understand the impact of plasma treatment on the Si/ZrO2 interface, deep level transient spectroscopy measurements were performed. It is reported that the interface state density (D it) comes down to 7.1 × 1010 eV−1 cm−2 from 4 × 1011 eV−1 cm−2, after plasma treatment. The reduction in D it is around five times and can be attributed to the passivation of oxygen vacancies near the Si/ZrO2 interface, as they try to relocate near the interface. The energy level position (E T) of interfacial traps is estimated to be 0.36 eV below the conduction band edge. The untreated ZrO2 film displayed poor leakage behavior due to the presence of several traps within the film and at the interface; O2 plasma treated films show improved leakage current density as they have been reduced from 5.4 × 10−8 A/cm2 to 1.98 × 10−9 A/cm2 for gate injection mode and 6.4 × 10−8 A/cm2 to 6.3 × 10−10 A/cm2 for substrate injection mode at 1 V. Hence, we suggest that plasma treatment might be useful in future device fabrication technology.

Keywords

Interface DLTS MIS defect thin film plasma treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nat. Mat. 1, 241 (2002).CrossRefGoogle Scholar
  2. 2.
    E.S. Shin, J.D. Oh, D.K. Kim, Y.-G. Ha, and J.H. Choi, J. Phys. D Appl. Phys. 48, 45105 (2015).CrossRefGoogle Scholar
  3. 3.
    J.H. Park, J.Y. Oh, S.W. Han, and T. Il, Lee, and H.K. Baik. ACS Appl. Mater. Interfaces 7, 4494 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Su, C. Wang, W. Xie, F. Xie, J. Chen, N. Zhao, and J. Xu, A.C.S. Appl. Mater. Interfaces 3, 4662 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, J. Appl. Phys. 121, 85301 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, AIP Adv. 5, 117122 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, J. Mater. Sci.: Mater. Electron. 27, 5264 (2016).Google Scholar
  8. 8.
    J.S. Meena, M.C. Chu, S.W. Kuo, F.C. Chang, and F.H. Ko, Phys. Chem. Chem. Phys. 12, 2582 (2010).CrossRefGoogle Scholar
  9. 9.
    A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, Appl. Surf. Sci. 370, 373 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, Appl. Phys. Lett. 110, 132904 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Mondal and A. Kumar, Superlatt. Microstruct. 100, 876 (2016).CrossRefGoogle Scholar
  12. 12.
    N.O. Pearce, B. Hamilton, A.R. Peaker, and R.A. Craven, J. Appl. Phys. 62, 576 (1987).CrossRefGoogle Scholar
  13. 13.
    S.N. Volkos, E.S. Efthymiou, S. Bernardini, I.D. Hawkins, A.R. Peaker, and G. Petkos, J. Appl. Phys. 100, 124103 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Kundu, Y. Anitha, S. Chakraborty, and P. Banerji, J. Vac. Sci. Technol. B 30, 051206 (2012).CrossRefGoogle Scholar
  15. 15.
    C. Tang and R. Ramprasad, Appl. Phys. Lett. 92, 182908 (2008).CrossRefGoogle Scholar
  16. 16.
    N. Zhan, M. Xu, D. Wei, and F. Lu, Appl. Surf. Sci. 254, 7512 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Singh, M. Chu, C. Wu, J. Liang, and Y. Chang, Org. Electron. 13, 721 (2012).CrossRefGoogle Scholar
  18. 18.
    Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, and C.M. Ng, J. Mater. Chem. 22, 17887 (2012).CrossRefGoogle Scholar
  19. 19.
    L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 45414 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, Appl. Phys. A 122, 11 (2016).Google Scholar
  21. 21.
    M.T. Nichols, W. Li, and D. Pei, G. a. Antonelli, Q. Lin, S. Banna, Y. Nishi, and J.L. Shohet. J. Appl. Phys. 115, 94105 (2014).CrossRefGoogle Scholar
  22. 22.
    J.H. Park, Y.B. Yoo, K.H. Lee, W.S. Jang, J.Y. Oh, S.S. Chae, andH.K. Baik, ACS Appl. Mater. Interfaces 5, 410 (2012).CrossRefGoogle Scholar
  23. 23.
    K.L. Ganapathi, N. Bhat, and S. Mohan, Appl. Phys. Lett. 103, 1 (2013).Google Scholar
  24. 24.
    J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, Sci. Rep. 4, 6395 (2014).CrossRefGoogle Scholar
  25. 25.
    F.-C. Chiu, Z.H. Lin, C.-W. Chang, C.-C. Wang, K.-F. Chuang, C.Y. Huang, J.Y. Lee, and H.-L. Hwang, J. Appl. Phys. 97, 34506 (2005).CrossRefGoogle Scholar
  26. 26.
    S. Dutta, A. Pandey, I. Yadav, O.P. Thakur, A. Kumar, R. Pal, and R. Chatterjee, J. Appl. Phys. 114, 14105 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of PhysicsIndira Gandhi National Tribal UniversityAmarkantakIndia
  2. 2.Department of PhysicsAchhruram Memorial CollegePuruliaIndia
  3. 3.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations