Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2

Abstract

The influence of the main growth parameters on the growth mechanism and film formation processes during metalorganic vapor-phase epitaxy (MOVPE) of two-dimensional MoS2 on sapphire (0001) have been investigated. Deposition was performed using molybdenum hexacarbonyl and di-tert-butyl sulfide as metalorganic precursors in a horizontal hot-wall MOVPE reactor from AIXTRON. The structural properties of the MoS2 films were analyzed by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. It was found that a substrate prebake step prior to growth reduced the nucleation density of the polycrystalline film. Simultaneously, the size of the MoS2 domains increased and the formation of parasitic carbonaceous film was suppressed. Additionally, the influence of growth parameters such as reactor pressure and surface temperature is discussed. An upper limit for these parameters was found, beyond which strong parasitic deposition or incorporation of carbon into MoS2 took place. This carbon contamination became significant at reactor pressure above 100 hPa and temperature above 900°C.

References

  1. 1.

    I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, and A.F. Morpurgo, Nano Lett. 15, 2336 (2015).

    Article  Google Scholar 

  2. 2.

    Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, Phys. B 406, 2254 (2011).

    Article  Google Scholar 

  3. 3.

    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969).

    Article  Google Scholar 

  4. 4.

    D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, and Y. Zhu, Extreme Mech. Lett. 13, 42 (2017).

  5. 5.

    E.M. Vogel and J.A. Robinson, MRS Bull. 40, 558 (2015).

    Article  Google Scholar 

  6. 6.

    M. Marx, S. Nordmann, J. Knoch, C. Franzen, C. Stampfer, D. Andrzejewski, T. Kümmell, G. Bacher, M. Heuken, H. Kalisch, and A. Vescan, J. Cryst. Growth 464, 100 (2017).

    Article  Google Scholar 

  7. 7.

    S.M. Eichfeld, V.O. Colon, Y. Nie, K. Cho, and J.A. Robinson, 2D Mater. 3, 025015 (2016).

    Article  Google Scholar 

  8. 8.

    K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.-J. Kim, D. Muller, and J. Park, Nature 520, 656 (2015).

    Article  Google Scholar 

  9. 9.

    L. Liu, H. Qiu, J. Wang, G. Xu, and L. Jiao, Nanoscale 8, 4486 (2016).

    Article  Google Scholar 

  10. 10.

    T. Kim, J. Mun, H. Park, D. Joung, M. Diware, W. Chegal, J. Park, S.-H. Jeong, and S.-W. Kang, Nanotechnology 28, 18LT01 (2017).

    Article  Google Scholar 

  11. 11.

    T. Ohta, F. Cicoira, P. Doppelt, L. Beitone, and P. Hoffmann, Chem. Vap. Depos. 7, 33 (2001).

    Article  Google Scholar 

  12. 12.

    P. O’Brien, M.A. Malik, M. Chuggaze, T. Trindale, J.R. Walsh, and A.C. Jones, J. Cryst. Growth 170, 23 (1997).

    Article  Google Scholar 

  13. 13.

    M.A. Malik, M. Afzaal, and P. O’Brien, Chem. Rev. 110, 4417 (2010).

    Article  Google Scholar 

  14. 14.

    K.D. Bronsema, J.L. de Boer, and F. Jellinek, Z. Anorg. Allg. Chem. 540, 15 (1986).

    Article  Google Scholar 

  15. 15.

    D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O.L. Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A.F. i Morral, and A. Kis, ACS Nano 9, 4611 (2015).

    Article  Google Scholar 

  16. 16.

    S. Najmaei, M. Amani, M.L. Chin, Z. Liu, A.G. Birdwell, T.P. O’Regan, P.M. Ajayan, M. Dubey, and J. Lou, ACS Nano 8, 7930 (2014).

    Article  Google Scholar 

  17. 17.

    A.E. Muslimov, V.E. Asadchikov, A.V. Butashin, V.P. Vlasov, A.N. Deryabin, B.S. Roshchin, S.N. Sulyanov, and V.M. Kanevsky, Crystallogr. Rep. 61, 730 (2016).

    Article  Google Scholar 

  18. 18.

    https://imagej.net. Accessed 04 Aug 2017.

  19. 19.

    A.C. Ferrari and D.M. Basko, Nat. Nanotechnol. 8, 235 (2013).

    Article  Google Scholar 

  20. 20.

    X. Zhang, Z.Y. Al Balushi, F. Zhang, T.H. Choudhury, S.M. Eichfeld, N. Alem, T.N. Jackson, J.A. Robinson, and J.M. Redwing, J. Electron. Mater. 45, 6273 (2016).

    Article  Google Scholar 

  21. 21.

    M. Ohring, Materials Science of Thin Films: Deposition and Structure, 2nd ed. (San Diego: Academic, 2002), pp. 380–386.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Marx.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 533 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marx, M., Grundmann, A., Lin, Y. et al. Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2 . Journal of Elec Materi 47, 910–916 (2018). https://doi.org/10.1007/s11664-017-5937-3

Download citation

Keywords

  • MOVPE
  • MOCVD
  • 2D materials
  • MoS2