Advertisement

Journal of Electronic Materials

, Volume 47, Issue 2, pp 910–916 | Cite as

Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2

  • M. Marx
  • A. Grundmann
  • Y.-R. Lin
  • D. Andrzejewski
  • T. Kümmell
  • G. Bacher
  • M. Heuken
  • H. Kalisch
  • A. Vescan
Topical Collection: 59th Electronic Materials Conference 2017
Part of the following topical collections:
  1. 59th Electronic Materials Conference 2017

Abstract

The influence of the main growth parameters on the growth mechanism and film formation processes during metalorganic vapor-phase epitaxy (MOVPE) of two-dimensional MoS2 on sapphire (0001) have been investigated. Deposition was performed using molybdenum hexacarbonyl and di-tert-butyl sulfide as metalorganic precursors in a horizontal hot-wall MOVPE reactor from AIXTRON. The structural properties of the MoS2 films were analyzed by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. It was found that a substrate prebake step prior to growth reduced the nucleation density of the polycrystalline film. Simultaneously, the size of the MoS2 domains increased and the formation of parasitic carbonaceous film was suppressed. Additionally, the influence of growth parameters such as reactor pressure and surface temperature is discussed. An upper limit for these parameters was found, beyond which strong parasitic deposition or incorporation of carbon into MoS2 took place. This carbon contamination became significant at reactor pressure above 100 hPa and temperature above 900°C.

Keywords

MOVPE MOCVD 2D materials MoS2 

Supplementary material

11664_2017_5937_MOESM1_ESM.pdf (533 kb)
Supplementary material 1 (PDF 533 kb)

References

  1. 1.
    I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, and A.F. Morpurgo, Nano Lett. 15, 2336 (2015).CrossRefGoogle Scholar
  2. 2.
    Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, Phys. B 406, 2254 (2011).CrossRefGoogle Scholar
  3. 3.
    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
  4. 4.
    D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, and Y. Zhu, Extreme Mech. Lett. 13, 42 (2017).Google Scholar
  5. 5.
    E.M. Vogel and J.A. Robinson, MRS Bull. 40, 558 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Marx, S. Nordmann, J. Knoch, C. Franzen, C. Stampfer, D. Andrzejewski, T. Kümmell, G. Bacher, M. Heuken, H. Kalisch, and A. Vescan, J. Cryst. Growth 464, 100 (2017).CrossRefGoogle Scholar
  7. 7.
    S.M. Eichfeld, V.O. Colon, Y. Nie, K. Cho, and J.A. Robinson, 2D Mater. 3, 025015 (2016).CrossRefGoogle Scholar
  8. 8.
    K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.-J. Kim, D. Muller, and J. Park, Nature 520, 656 (2015).CrossRefGoogle Scholar
  9. 9.
    L. Liu, H. Qiu, J. Wang, G. Xu, and L. Jiao, Nanoscale 8, 4486 (2016).CrossRefGoogle Scholar
  10. 10.
    T. Kim, J. Mun, H. Park, D. Joung, M. Diware, W. Chegal, J. Park, S.-H. Jeong, and S.-W. Kang, Nanotechnology 28, 18LT01 (2017).CrossRefGoogle Scholar
  11. 11.
    T. Ohta, F. Cicoira, P. Doppelt, L. Beitone, and P. Hoffmann, Chem. Vap. Depos. 7, 33 (2001).CrossRefGoogle Scholar
  12. 12.
    P. O’Brien, M.A. Malik, M. Chuggaze, T. Trindale, J.R. Walsh, and A.C. Jones, J. Cryst. Growth 170, 23 (1997).CrossRefGoogle Scholar
  13. 13.
    M.A. Malik, M. Afzaal, and P. O’Brien, Chem. Rev. 110, 4417 (2010).CrossRefGoogle Scholar
  14. 14.
    K.D. Bronsema, J.L. de Boer, and F. Jellinek, Z. Anorg. Allg. Chem. 540, 15 (1986).CrossRefGoogle Scholar
  15. 15.
    D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O.L. Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A.F. i Morral, and A. Kis, ACS Nano 9, 4611 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Najmaei, M. Amani, M.L. Chin, Z. Liu, A.G. Birdwell, T.P. O’Regan, P.M. Ajayan, M. Dubey, and J. Lou, ACS Nano 8, 7930 (2014).CrossRefGoogle Scholar
  17. 17.
    A.E. Muslimov, V.E. Asadchikov, A.V. Butashin, V.P. Vlasov, A.N. Deryabin, B.S. Roshchin, S.N. Sulyanov, and V.M. Kanevsky, Crystallogr. Rep. 61, 730 (2016).CrossRefGoogle Scholar
  18. 18.
    https://imagej.net. Accessed 04 Aug 2017.
  19. 19.
    A.C. Ferrari and D.M. Basko, Nat. Nanotechnol. 8, 235 (2013).CrossRefGoogle Scholar
  20. 20.
    X. Zhang, Z.Y. Al Balushi, F. Zhang, T.H. Choudhury, S.M. Eichfeld, N. Alem, T.N. Jackson, J.A. Robinson, and J.M. Redwing, J. Electron. Mater. 45, 6273 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Ohring, Materials Science of Thin Films: Deposition and Structure, 2nd ed. (San Diego: Academic, 2002), pp. 380–386.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • M. Marx
    • 1
  • A. Grundmann
    • 1
  • Y.-R. Lin
    • 2
  • D. Andrzejewski
    • 3
  • T. Kümmell
    • 3
  • G. Bacher
    • 3
  • M. Heuken
    • 1
    • 2
  • H. Kalisch
    • 1
  • A. Vescan
    • 1
  1. 1.GaN Device TechnologyRWTH Aachen UniversityAachenGermany
  2. 2.AIXTRON SEHerzogenrathGermany
  3. 3.Werkstoffe der Elektrotechnik and CENIDEUniversity Duisburg-EssenDuisburgGermany

Personalised recommendations