Skip to main content
Log in

Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann–Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  2. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater. 7, 972 (2008).

    Article  Google Scholar 

  3. S. Lai, Tech. Dig. Int. Electron Devices Meet. 10.1.1 (2003)

  4. N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys. 69, 2849 (1991).

    Article  Google Scholar 

  5. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, High Temp. High Press. 46, 219 (2017).

    Google Scholar 

  6. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  Google Scholar 

  7. R. Sankar, C.S. Chi, D.P. Wong, W.L. Chien, J.S. Hwang, F.C. Chou, L.C. Chen, and K.H. Chen, Cryst Eng Commun 17, 3440 (2015).

    Article  Google Scholar 

  8. J.E. Hong and S.G. Yoon, ECS J. Solid State Sci. Technol. 3, 298 (2014).

    Article  Google Scholar 

  9. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, J. Electron. Mater. 46, 955 (2017).

    Article  Google Scholar 

  10. T.M. Tritt, Thermal conductivity: theory, properties, and applications (New York: Kluwer Academic, 2004).

    Book  Google Scholar 

  11. A. Kosuga, K. Nakai, M. Matsuzawa, Y. Fujii, R. Funahashi, T. Tachizawa, Y. Kubota, and K. Kifune, APL Mater. 2, 086102 (2014).

    Article  Google Scholar 

  12. S. Perumal, S. Roychowdhury, D.S. Negi, R. Datta, and K. Biswas, Chem. Mater. 27, 7171 (2015).

    Article  Google Scholar 

  13. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, Nat. Mater. 10, 202 (2011).

    Article  Google Scholar 

  14. E.R. Sittner, K.S. Siegert, P. Jost, C. Schlockermann, F.R.L. Lange, and M. Wuttig, Phys. Status Solidi Appl. Mater. Sci. 210, 147 (2013).

    Article  Google Scholar 

  15. W.P. Risk, C.T. Rettner, and S. Raoux, Appl. Phys. Lett. 94, 101906 (2009).

    Article  Google Scholar 

  16. V. Giraud, J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer, J. Appl. Phys. 98, 013520 (2005).

    Article  Google Scholar 

  17. J.P. Reifenberg, M.A. Panzer, S.B. Kim, A.M. Gibby, Y. Zhang, S. Wong, H.S.P. Wong, E. Pop, and K.E. Goodson, Appl. Phys. Lett. 91, 111904 (2007).

    Article  Google Scholar 

  18. C. Peng and M. Mansuripur, Appl. Opt. 39, 2347 (2000).

    Article  Google Scholar 

  19. P.P. Konstantinov, L.E. Shelimova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 37, 662 (2001).

    Article  Google Scholar 

  20. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, J. Appl. Phys. 87, 4130 (2000).

    Article  Google Scholar 

  21. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, J. Appl. Phys. 112, 053712 (2012).

    Article  Google Scholar 

  22. S.E. Gustafsson, E. Karawacki, and M.N. Khan, J. Phys. D 12, 1411 (1979).

    Article  Google Scholar 

  23. S.E. Gustafsson, E. Karawacki, and M.N. Khan, J. Appl. Phys. 52, 2596 (1981).

    Article  Google Scholar 

  24. S.E. Gustafsson, J. Appl. Phys. 53, 6064 (1982).

    Article  Google Scholar 

  25. S.E. Gustafsson, E. Karawacki, and M.A. Chohan, J. Phys. D 19, 727 (1986).

    Article  Google Scholar 

  26. M. Susa, K. Nagata, and K.S. Goto, Trans. Jpn. Inst. Met. 29, 133 (1988).

    Article  Google Scholar 

  27. E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, Metall. Mater. Trans. A 30, 1971 (1999).

    Article  Google Scholar 

  28. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, J. Appl. Phys. 110, 023701 (2011).

    Article  Google Scholar 

  29. L.E. Shelimova, O.G. Karpinskii, V.S. Zemskov, and P.P. Konstantinov, Inorg. Mater. 36, 235 (2000).

    Article  Google Scholar 

  30. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 3525 (2014).

    Google Scholar 

  31. T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, G. Bruns, I. Sergueev, H.C. Wille, R.P. Hermann, and M. Wuttig, Adv. Funct. Mater. 21, 2232 (2011).

    Article  Google Scholar 

  32. R.O. Pohl and J. Non-Cryst, Solids 352, 3363 (2006).

    Google Scholar 

  33. B. Zhang, W. Zhang, Z. Shen, Y. Chen, J. Li, S. Zhang, Z. Zhang, M. Wuttig, R. Mazzarello, E. Ma, and X. Han, Appl. Phys. Lett. 108, 191902 (2016).

    Article  Google Scholar 

  34. T.J. Zhu, F. Yan, X.B. Zhao, S.N. Zhang, Y. Chen, and S.H. Yang, J. Phys. D Appl. Phys. 40, 6094–6097 (2007).

    Article  Google Scholar 

  35. M.M. Ibrahim, M.M. Wakkad, E.K. Shokr, and H.A. Abdel-Ghani, J. Therm. Anal. 37, 813 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, R., Endo, R., Kuwahara, M. et al. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy. J. Electron. Mater. 47, 3184–3188 (2018). https://doi.org/10.1007/s11664-017-5932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5932-8

Keywords

Navigation