Skip to main content
Log in

Microwave-Assisted Hydrothermal Synthesis of Cu-Doped ZnO Single Crystal Nanoparticles with Modified Photoluminescence and Confirmed Ferromagnetism

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single crystal ZnO- and Cu-doped ZnO nanoparticles were synthesized by microwave assisted hydrothermal method. The effects of Cu concentration on the optical and magnetic properties of the nanoparticles were investigated. Cu doping did not lead to the formation of a second phase, but slightly reduced the particle size. The valence state of Cu in ZnO was confirmed to be + 2. With the increase of Cu doping concentration, the photoluminescence intensity decreased under the excitation by the light with a wavelength of 325 nm. Intrinsic ferromagnetic behavior was confirmed in Cu-doped ZnO nanoparticles and the saturation magnetization can be enhanced by increasing doping concentration. The origin of ferromagnetism can be interpreted by both effects of Cu doping and the defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Jiang, Y. Liu, H. Kan, B. Yuan, and H. Zhao, Mater. Lett. 81, 198 (2012).

    Article  Google Scholar 

  2. C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 838 (2003).

    Article  Google Scholar 

  3. Y. Lai, M. Ming, Y. Yu, X. Wang, and D. Tong, Appl. Catal. B Environ. 105, 335 (2011).

    Article  Google Scholar 

  4. S. Caliskan and S. Guner, J. Alloys Compd. 619, 91 (2015).

    Article  Google Scholar 

  5. I. Zutic, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  6. C. Zhang, Z. Huang, X. Liao, G. Yin, and J. Gu, J. Coat. Technol. Res. 9, 621 (2012).

    Article  Google Scholar 

  7. N. Samarth and J.K. Furdyna, J. Appl. Phys. 78, 990 (1988).

    Google Scholar 

  8. M. Johnson, J. Phys. Chem. B 109, 14278 (2005).

    Article  Google Scholar 

  9. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, and B.H. Koo, J. Korean Phys. Soc. 62, 1479 (2013).

    Article  Google Scholar 

  10. P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, and H.C. Verma, J. Magn. Magn. Mater. 321, 2587 (2009).

    Article  Google Scholar 

  11. J.J. Liu, M.H. Yu, and W.L. Zhou, Appl. Phys. Lett. 87, 172505 (2005).

    Article  Google Scholar 

  12. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, J. Appl. Phys. 92, 6066 (2002).

    Article  Google Scholar 

  13. J.H. Park, G.K. Min, H.M. Jang, S. Ryu, and Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004).

    Article  Google Scholar 

  14. D.B. Buchholz, R.P.H. Chang, J.Y. Song, and J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).

    Article  Google Scholar 

  15. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, G.W. Kim, J.Q. Lu, and B.H. Koo, J. Korean Phys. Soc. 60, 1644 (2012).

    Article  Google Scholar 

  16. S. Muthukumaran and R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012).

    Article  Google Scholar 

  17. M.L. Addonizio, A. Aronne, S. Daliento, O. Tari, E. Fanelli, and P. Pernice, Appl. Surf. Sci. 305, 194 (2014).

    Article  Google Scholar 

  18. Z. Wang, B. Huang, X. Qin, X. Zhang, P. Wang, J. Wei, J. Zhan, X. Jing, H. Liu, Z. Xu, H. Cheng, X. Wang, and Z. Zheng, Mater. Lett. 63, 130 (2009).

    Article  Google Scholar 

  19. S.T. Tan, A.A. Umar, A. Balouch, M. Yahaya, C.C. Yap, M.M. Salleh, and M. Oyama, Ultrason. Sonochem. 21, 754 (2014).

    Article  Google Scholar 

  20. M.S. Mohajerani, M. Mazloumi, A. Lak, A. Kajbafvala, S. Zanganeh, and S.K. Sadrnezhaad, J. Cryst. Growth 310, 3621 (2008).

    Article  Google Scholar 

  21. T. Krishnakumar, R. Jayaprakash, N. Pinna, V.N. Singh, B.R. Mehta, and A.R. Phani, Mater. Lett. 63, 242 (2009).

    Article  Google Scholar 

  22. C. Xu, K. Yang, L. Huang, and H. Wang, J. Chem. Phys. 130, 082504 (2009).

    Google Scholar 

  23. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, and T. Wu, J. Phys. Chem. C 112, 9579 (2008).

    Article  Google Scholar 

  24. H.L. Liu, L.H. Fei, H.B. Liu, J.H. Yang, X. Jin, M. Gao, Y. Liu, X. Cheng, and X. Zhang, J. Mater. Sci. Mater. Electron. 24, 58 (2013).

    Article  Google Scholar 

  25. J.A. Mary, J.J. Vijaya, M. Bououdina, L.J. Kennedy, J.H. Dai, and Y. Song, Phys. E 66, 209 (2015).

    Article  Google Scholar 

  26. J. Dai, C.X. Xu, X.Y. Xu, J.T. Li, J.Y. Guo, and Y. Lin, APL Mater. 1, 617 (2013).

    Article  Google Scholar 

  27. O. Akhavan, R. Azimirad, S. Safa, and E. Hasani, J. Mater. Chem. 21, 9634 (2011).

    Article  Google Scholar 

  28. L. Jing, X. Sun, B. Xin, B. Wang, W. Cai, and H. Fu, J. Solid State Chem. 177, 3375 (2004).

    Article  Google Scholar 

  29. R. Mariappan, V. Ponnuswamy, and P. Suresh, Superlattice Microstruct. 52, 500 (2012).

    Article  Google Scholar 

  30. P. Li, S. Wang, J. Li, and Y. Wei, J. Lumin. 132, 220 (2012).

    Article  Google Scholar 

  31. V.A.L. Roy, A.B. Djurišić, H. Liu, X.X. Zhang, Y.H. Leung, M.H. Xie, J. Gao, H.F. Lui, and C. Surya, Appl. Phys. Lett. 84, 756 (2004).

    Article  Google Scholar 

  32. Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheng, and T. Wu, Appl. Phys. Lett. 98, 162503 (2011).

    Article  Google Scholar 

  33. R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 24, 96 (2013).

    Article  Google Scholar 

  34. M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, and Y. Li, Ceram. Int. 43, 3166 (2017).

    Article  Google Scholar 

  35. J.M. Coey, M. Venkatesan, and C.B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  Google Scholar 

  36. T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7198-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, M., Tang, C.M. & Liu, Z.W. Microwave-Assisted Hydrothermal Synthesis of Cu-Doped ZnO Single Crystal Nanoparticles with Modified Photoluminescence and Confirmed Ferromagnetism. J. Electron. Mater. 47, 1390–1396 (2018). https://doi.org/10.1007/s11664-017-5928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5928-4

Keywords

Navigation