Skip to main content

Advertisement

Log in

Thermoelectric and Structural Properties of Zr-/Hf-Based Half-Heusler Compounds Produced at a Large Scale

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The half-Heusler (HH) systems are promising candidates for thermoelectric (TE) applications since they have shown high figures of merit (zT) of \(\sim \) 1, which are directly related to the energy conversion efficiency. To use HH compounds for TE devices, the materials must be phase-stable at operating temperatures up to \(600^{\circ }\)C. Currently, only a few HH compositions are available in large quantities. Hence, we focus on the TE and structural properties of three commercially available Zr-/Hf-based HH compounds in this publication. In particular, we evaluate the thermal conductivities and the figures of merit and critically discuss uncertainties and propagation error in the measurements. We find thermal conductivities of less than 6.0 \(\hbox {W K}^{-1}\hbox {m}^{-1}\) for all investigated materials and notably high figures of merit of 0.93 and 0.60 for n- and p-type compounds, respectively, at \(600^{\circ }\)C. Additionally, our investigations reveal that the grain structures of all materials also contain secondary phases like HfO2, Sn-Ni and Ti-Zr-Sn rich phases while an additional \(\hbox {SnO}_2\) phase was found following several hours of harsh heat treatment at \(800^{\circ }\)C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, and V. Lemort, Renew. Sust. Energy Rev. 22, 168 (2013).

    Article  Google Scholar 

  2. C. Sprouse and C. Depcik, Appl. Therm. Eng. 51, 711 (2013).

    Article  Google Scholar 

  3. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, J. Mater. Res. 26, 1919 (2011).

    Article  Google Scholar 

  4. H. Wang, W.D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, Charlene, F. Harris, P. Gilbert, J.W. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).

    Article  Google Scholar 

  5. Y. Gelbstein, J. Tunbridge, R. Dixon, M.J. Reece, H. Ning, R. Gilchrist, R. Summers, I. Agote, M.A. Lagos, K. Simpson, C. Rouaud, P. Feulner, S. Rivera, R. Torrecillas, M. Husband, J. Crossley, and I. Robinson, J. Electron. Mater. 43, 1703 (2014).

    Article  Google Scholar 

  6. M.T. Pennella, M. Gasulla, in A Review of Commercial Energy Harvesters for Autonomous Sensor, IMTC 2007 (IEEE, 2007), pp. 1–5

  7. G.L. Bennett, J.J. Lombardo, R.J. Hemler, G. Silverman, C.W. Whitmore, W.R. Amos, E.W. Johnson, A. Schock, R.W. Zocher, T.K. Keenan, J. Hagan, R. Englehart, in 4th International Energy Conversion Engineering Conference and Exhibit (IECEC) (San Diego, California, 2006)

  8. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  9. A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).

    Article  Google Scholar 

  10. A.S. Kushch, J.C. Bass, S. Ghamaty, N.B. Eisner, in Thermoelectrics, 2001. Proceedings ICT 2001. XX International Conference on (IEEE, 2001), pp. 422–430

  11. D. Crane, J. LaGrandeur, V. Jovovic, M. Ranalli, M. Adldinger, E. Poliquin, J. Dean, D. Kossakovski, B. Mazar, and C. Maranville, J. Electron. Mater. 42, 1582 (2013).

    Article  Google Scholar 

  12. J. Lohse, K. Sander, M. Wirts, Final Report, OKOPOL, Hamburg (2001)

  13. J. Kähler, N. Heuck, A. Stranz, A. Waag, and E. Peiner, IEEE T. Comp. Pack. Man. 2(2), 199 (2012).

    Google Scholar 

  14. J. Kähler, A. Stranz, A. Waag, and E. Peiner, J. Electron. Mater. 43, 2397 (2014).

    Article  Google Scholar 

  15. S.-L. Soo, Direct Energy Conversion (Prentice Hall, Upper Saddle River, 1968)

    Google Scholar 

  16. G.A. Slack, D.M. Rowe CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995 ), p. 407

    Google Scholar 

  17. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  18. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  19. R. Venkatasubramanian, E. Siivola, T. Colpitts, Nature 413, 597 (2001)

    Article  Google Scholar 

  20. D. Borca-Tasciuc, W.L. Achimov, G. Liu, H.-W. Chen, C.-H. Ren, S.S. Lin, T. Pei, Microscale, Therm. Eng. 5, 225 (2001)

    Article  Google Scholar 

  21. N. Peranio, Structural, chemical, and thermoelectric properties of Bi2Te3 Peltier materials: bulk, thin films, and superlattices, Ph.D. Thesis, Eberhard-Karls-Universität Tübingen, Germany, 2008 Search PubMed ( 2008)

  22. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).

    Article  Google Scholar 

  23. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

  24. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  25. J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, Adv. Funct. Mater. 18, 2880 (2008).

    Article  Google Scholar 

  26. J.W. Simonson and S.J. Poon, J. Phys.-Condens. Mat. 20, 255220 (2008).

    Article  Google Scholar 

  27. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).

    Article  Google Scholar 

  28. J. Gerster, A. Bracchi, M. Müller, Method for producing a thermoelectric object for a thermoelectric conversion device, (2017), U.S. Patent No 9, 634, 219

  29. L.J. van-der Pauw, Philips Tech. Rev. 20, 220 (1958).

    Google Scholar 

  30. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, 2006)

    Google Scholar 

  31. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  Google Scholar 

  32. J.A. Cape and G.W. Lehman, J. Appl. Phys. 34, 1909 (1963).

    Article  Google Scholar 

  33. A.P.F. Albers, T.A. Restivo, L. Pagano, and J.B. Baldo, Thermochim. Acta 370, 111 (2001).

    Article  Google Scholar 

  34. R.D. Cowan, J. Appl. Phys. 34, 926 (1963).

    Article  Google Scholar 

  35. L. Dusza, High Temp.-High Press. 27, 467 (1995).

    Article  Google Scholar 

  36. T. Azumi and Y. Takahashi, Rev. Sci. Instrum. 52, 1411 (1981).

    Article  Google Scholar 

  37. T.L. Shaw and J.C. Carrol, Int. J. Thermophys. 19, 1671 (1998).

    Article  Google Scholar 

  38. T. Graf, C. Felser, and S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011).

    Article  Google Scholar 

  39. C.  Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 2004)

    Google Scholar 

  40. M. Cutler, J.F. Leavy, and R.L. Fitzpatrick, Phys. Rev. 133, A1143 (1964).

    Article  Google Scholar 

  41. H. Fritzsche, Solid State Commun. 9, 1813 (1971).

    Article  Google Scholar 

  42. B. Balke, G.H. Fecher, A. Gloskovskii, J. Barth, K. Kroth, C. Felser, R. Robert, and A. Weidenkaff, Phys. Rev. B 77, 045209 (2008).

    Article  Google Scholar 

  43. S. Populoh, O.C. Brunko, K. Galazka, W. Xie, and A. Weidenkaff, Materials 6, 1326 (2013).

    Article  Google Scholar 

  44. E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014).

    Article  Google Scholar 

  45. C. Birkel, J. Douglas, B. Lettiere, G. Seward, N. Verma, Y. Zhang, T. Pollock, R. Seshadri, and G. Stucky, Phys. Chem. Chem. Phys. 15, 6990 (2013).

    Article  Google Scholar 

  46. M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).

    Article  Google Scholar 

  47. K. Galazka, S. Populoh, L. Sagarna, L. Karvonen, W. Xie, A. Beni, P. Schmutz, J. Hulliger, and A. Weidenkaff, Phys. Status Solidi A 211, 1259 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zillmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zillmann, D., Waag, A., Peiner, E. et al. Thermoelectric and Structural Properties of Zr-/Hf-Based Half-Heusler Compounds Produced at a Large Scale . J. Electron. Mater. 47, 1546–1554 (2018). https://doi.org/10.1007/s11664-017-5917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5917-7

Keywords

Navigation