Skip to main content
Log in

Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tian, Z.Y. Zhou, S.-G. Sun, Y. Ding, and Z.L. Wang, Science 316, 732 (2007).

    Article  Google Scholar 

  2. A.M. Feltham and M. Spiro, Chem. Rev. 71, 177 (1971).

    Article  Google Scholar 

  3. J. Kašpar, P. Fornasiero, and N. Hickey, Catal. Today 77, 419 (2003).

    Article  Google Scholar 

  4. S. Park, J.M. Vohs, and R.J. Gorte, Nature 404, 265 (2000).

    Article  Google Scholar 

  5. X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovský, I. Turek, and J. Kuneš, Nat. Mater. 13, 367 (2014).

    Article  Google Scholar 

  6. X. Martí, I. Fina, and T. Jungwirth, IEEE Trans. Magn. 51, 1 (2015).

    Article  Google Scholar 

  7. K.R. Thampi and M. Grätlez, J. Mol. Catal. 60, 31 (1990).

    Article  Google Scholar 

  8. M. Salmeron, L. Brewer, and G.A. Somorjai, Surf. Sci. 112, 207 (1981).

    Article  Google Scholar 

  9. T. Chao, K.J. Walsh, and P.S. Fedkiw, Solid State Ion. 47, 277 (1991).

    Article  Google Scholar 

  10. Y. Abe, M. Kawamura, and K. Sasaki, Jpn. J. Appl. Phys. 38, 2092 (1999).

    Article  Google Scholar 

  11. M.D. Ackermann, T.M. Pedersen, B.L.M. Hendriksen, O. Robach, S.C. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, and J.W.M. Frenken, Phy. Rev. Lett. 95, 255505 (2005).

    Article  Google Scholar 

  12. M. Alsabet, M. Grden, and G. Jerkiewicz, J. Electroanal. Chem. 589, 120 (2006).

    Article  Google Scholar 

  13. N. Seriani, W. Pompe, and L.C. Ciacchi, J. Phys. Chem. B 110, 14860 (2006).

    Article  Google Scholar 

  14. N. Seriani, Z. Jin, W. Pompe, and L.C. Ciacchi, Phy. Rev. B. 76, 155421 (2007).

    Article  Google Scholar 

  15. N. Seriani and F. Mittendorfer, J. Phys. Condens. Matter 20, 184023 (2008).

    Article  Google Scholar 

  16. R.K. Nomiyama, M.J. Piotrowski, and J.L. Da Silva, Phy. Rev. B. 84, 100101 (2011).

    Article  Google Scholar 

  17. W.J. Moore Jr and L. Pauling, J. Am. Chem. Soc. 63, 1392 (1941).

    Article  Google Scholar 

  18. O. Muller and R. Roy, J. Less Common Met. 16, 129 (1968).

    Article  Google Scholar 

  19. E.E. Galloni and A.E. Roffo Jr, J. Chem. Phys. 9, 875 (1941).

    Article  Google Scholar 

  20. P.K. Jha, S.D. Gupta, S.K. Gupta, and D. Kirin, Int. J. Mod. Phys. B 25, 1543 (2011).

    Article  Google Scholar 

  21. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and L. Dabo, J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  22. S. Kansara, D. Singh, S.K. Gupta, and Y. Sonvane, Solid State Commun. 245, 36 (2016).

    Article  Google Scholar 

  23. B. Li, Y. Ding, D.Y. Kim, R. Ahuja, G. Zou, and H.K. Mao, Proc. Natl. Acad. Sci. 108, 18618 (2011).

    Article  Google Scholar 

  24. T. Sun, K. Umemoto, Z. Wu, J.C. Zheng, and R.M. Wentzcovitch, Phys. Rev. B 78, 024304 (2008).

    Article  Google Scholar 

  25. H.R. Soni, S.D. Gupta, S.K. Gupta, and P.K. Jha, Physica B 406, 2143 (2011).

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phy. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  27. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  Google Scholar 

  28. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  29. A.A. Adllan and A. Dal Corso, J. Phys. Condens. Matter 23, 425501 (2011).

    Article  Google Scholar 

  30. G.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  31. C. Li, R. Wu, A.J. Freeman, and C.L. Fu, Phys. Rev. B 48, 8317 (1993).

    Article  Google Scholar 

  32. F. Zheng, L.Z. Tan, S. Liu, and A.M. Rappe, Nano Lett. 15, 7794 (2015).

    Article  Google Scholar 

  33. J.R. McBride, G.W. Graham, C.R. Peters, and W.H. Weber, J. Appl. Phys. 69, 1596 (1991).

    Article  Google Scholar 

  34. D. Lipton and R.L. Jacobs, J. Phys. C Met. Phys. Suppl. 3, S389 (1970).

    Article  Google Scholar 

  35. K. Takenaka, Sci. Technol. Adv. Mater. 13, 013001 (2012).

    Article  Google Scholar 

  36. P. Debye, Ann. Phys. 39, 789 (1912).

    Article  Google Scholar 

  37. A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjeev K. Gupta or Yogesh Sonvane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansara, S., Gupta, S.K., Sonvane, . et al. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory. J. Electron. Mater. 47, 1293–1301 (2018). https://doi.org/10.1007/s11664-017-5912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5912-z

Keywords

Navigation