Skip to main content
Log in

Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4′-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δx < 0.023 and Δy < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Wu and D. Ma, Mater. Sci. Eng. R 107, 1 (2016).

    Article  Google Scholar 

  2. J. Wang, F. Zhang, J. Zhang, W. Tang, A. Tang, H. Peng, Z. Xu, F. Teng, and Y. Wang, J. Photochem. Photobiol. C Photochem. Rev. 17, 69 (2013).

    Article  Google Scholar 

  3. Y. Karzazi, J. Mater. Environ. Sci. 5, 1 (2014).

    Google Scholar 

  4. J.-H. Wu, C.-A. Chi, C.-L. Chiang, G.-Y. Chen, Y.-P. Lin, C.-C. Chen, S.-Y. Ho, S.-P. Chen, and J.-Y. Li, Opt. Mater. 55, 90 (2016).

    Article  Google Scholar 

  5. L. Xiong, W. Zhu, N. Wei, J. Li, W. Sun, X. Wu, J. Cao, and Z. Wang, Org. Electron. 14, 32 (2013).

    Article  Google Scholar 

  6. J. Lee, T.-W. Koh, H. Cho, S. Hofmann, S. Reineke, J.-H. Lee, J.-I. Lee, S. Yoo, K. Leo, and M.C. Gather, Org. Electron. 26, 334 (2015).

    Article  Google Scholar 

  7. T. Xu, M. Yang, J. Liu, X. Wu, I. Murtaza, G. He, and H. Meng, Org. Electron. 37, 93 (2016).

    Article  Google Scholar 

  8. Q. Wang, D. Ma, J. Ding, L. Wang, Q. Qiao, H. Jia, B.E. Gnade, and J. Hoshikawa-Halbert, Org. Electron. 19, 157 (2015).

    Article  Google Scholar 

  9. G.Y. Zhong, Y.Q. Zhang, and X.A. Cao, Org. Electron. 11, 1338 (2010).

    Article  Google Scholar 

  10. Y.-S. Seo and D.-G. Moon, Curr. Appl. Phys. 14, 1188 (2014).

    Article  Google Scholar 

  11. K.S. Yook, S.K. Jeon, and J.Y. Lee, J. Lumin. 169, 266 (2016).

    Article  Google Scholar 

  12. P. Tyagi, R. Srivastava, A. Kumar, S. Tuli, and M.N. Kamalasanan, J. Lumin. 136, 249 (2013).

    Article  Google Scholar 

  13. T. Tsuboi, T. Kishimoto, K. Wako, K. Matsuda, and H. Iguchi, Opt. Mater. 34, 2025 (2012).

    Article  Google Scholar 

  14. J.-H. Jou, S. Kumar, M. Singh, Y.-H. Chen, C.-C. Chen, and M.-T. Lee, Molecules 20, 13005 (2015).

    Article  Google Scholar 

  15. T.-L. Chiu, H.-J. Chen, Y.-H. Hung, Y.-H. Hsieh, J.-J. Huang, and M.-K. Leung, IEEE J. Sel. Top. Quantum Electron. 22, 2000406 (2016).

    Google Scholar 

  16. C.-H. Gao, D.-Y. Zhou, W. Gu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, Org. Electron. 14, 1177 (2013).

    Article  Google Scholar 

  17. S.I. Yoo, J.A. Yoon, N.H. Kim, J.W. Kim, J.S. Kang, C.-B. Moon, and W.Y. Kim, J. Lumin. 160, 346 (2015).

    Article  Google Scholar 

  18. J. Yu, W. Zhang, W. Wen, H. Lin, and Y. Jiang, Displays 32, 87 (2011).

    Article  Google Scholar 

  19. J.W. Kim, N.H. Kim, J.-A. Yoon, S.I. Yoo, J.S. Kang, K.W. Cheah, F.R. Zhu, and W.Y. Kim, Opt. Mater. 40, 57 (2015).

    Article  Google Scholar 

  20. M. Fathollahi, M. Ameri, E. Mohajerani, E. Mehrparvar, and M. Babaei, Sci. Rep. 7, 42787 (2017).

    Article  Google Scholar 

  21. B.S. Mohammed, N.E.C. Sari, and M.K. Selma, Trans. Electr. Electron. Mater. 16, 124 (2015).

    Article  Google Scholar 

  22. P. Juhasz, J. Nevrela, M. Micjan, M. Novota, J. Uhrik, L. Stuchlikova, J. Jakabovic, L. Harmatha, and M. Weis, J. Nanotechnol. 7, 47 (2016).

    Google Scholar 

  23. S.-M. Park, K. Ebihara, T. Ikegami, B.-J. Lee, K.-B. Lim, and P.-K. Shin, Curr. Appl. Phys. 7, 474 (2007).

    Article  Google Scholar 

  24. L. Hou, P. Liu, Y. Li, and C. Wu, Thin Solid Films 517, 4926 (2009).

    Article  Google Scholar 

  25. T. Matsushima and C. Adachi, Thin Solid Films 516, 5069 (2008).

    Article  Google Scholar 

  26. H. Yang, W. Xie, Y. Zhao, J. Hou, and S. Liu, Solid State Electron. 51, 111 (2007).

    Article  Google Scholar 

  27. P.S. Rudati, D.C. Mueller, and K. Meerholz, J. Appl. Res. Technol. 13, 253 (2015).

    Article  Google Scholar 

  28. H. Siemund and H. Göbel, IEEE Trans. Electron Devices 63, 3700 (2016).

    Article  Google Scholar 

  29. S.-H. Yang, B.-C. Hong, and S.-F. Huang, J. Appl. Phys. 105, 113105 (2009).

    Article  Google Scholar 

  30. T.C. Rosenow, in White Organic Light Emitting Diodes, Dissertation of Technische Universität Dresden (2011).

  31. S.-H. Yang, P.-J. Shih, W.-J. Wu, and Y.-H. Huang, J. Lumin. 142, 86 (2013).

    Article  Google Scholar 

  32. Y.-L. Wang, J.-J. Xu, Y.-W. Lin, Q. Chen, H.-Q. Shan, Y. Yan, V.A.L. Roy, and Z.-X. Xu, AIP Adv. 5, 107205 (2015).

    Article  Google Scholar 

  33. S.W. Liu, Y. Divayana, A.P. Abiyasa, S.T. Tan, H.V. Demir, and X.W. Sun, Appl. Phys. Lett. 101, 093301 (2012).

    Article  Google Scholar 

  34. S. Lee, J. Koo, G. Hyung, D. Lim, D. Lee, K. Lee, S. Yoon, W. Kim, and Y. Kim, Nanoscale Res. Lett. 7, 23 (2012).

    Article  Google Scholar 

  35. Y.-S. Tsai, L.-A. Hong, F.-S. Juang, and C.-Y. Chen, J. Lumin. 153, 312 (2014).

    Article  Google Scholar 

  36. M. Shan, H. Jiang, Y. Guan, D. Sun, Y. Wang, J. Hua, and J. Wang, RSC Adv. 7, 13584 (2017).

    Article  Google Scholar 

  37. Y. Li, Organic Optoelectronic Materials (Cham: Springer, 2015), p. 241. https://doi.org/10.1007/978-3-319-16862-3_6.

  38. L. Zhou, J.Y. Zhuang, S. Tongay, W.M. Su, and Z. Cui, J. Appl. Phys. 114, 074506 (2013).

    Article  Google Scholar 

  39. G.E. Norby, C.-D. Park, B. O’Brien, G. Li, L. Huang, and J. Li, Org. Electron. 37, 163 (2016).

    Article  Google Scholar 

  40. Z. Gao, F. Wang, K. Guo, H. Wang, B. Wei, and B. Xu, Opt. Laser Technol. 56, 20 (2014).

    Article  Google Scholar 

  41. Y. Kajiyama, K. Kajiyama, and H. Aziz, Opt. Express 30, 30783 (2015).

    Article  Google Scholar 

  42. A.P. Green and A.R. Buckley, Phys. Chem. Chem. Phys. 17, 1435 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Wu, JP., Huang, TL. et al. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers. J. Electron. Mater. 47, 1232–1238 (2018). https://doi.org/10.1007/s11664-017-5892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5892-z

Keywords

Navigation