Skip to main content

Advertisement

Log in

Techniques for Mitigating Thermal Fatigue Degradation, Controlling Efficiency, and Extending Lifetime in a ZnO Thermoelectric Using Grain Size Gradient FGMs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A functionally graded material (FGM) in terms of grain size gradation is fabricated using zinc oxide (ZnO) with spark plasma sintering and an additive manufacturing technique by diffusion bonding layers of material sintered at different temperatures to achieve a thermoelectric generator (TEG) material that can dissipate heat well and retain high energy conversion efficiency for longer-lasting and comparably efficient TEGs. This FGM is compared to a previously made FGM with continuous grain size gradation. Uniform and graded grain size conditions are modeled for thermoelectric output by using thermoelectric properties of the uniform grain size as well as the varying properties seen in the FGMs. The actual thermoelectric output of the samples is measured and compared to the simulations. The grain size has a large effect on the efficiency and efficiency range. The samples are thermally cycled with a fast heating rate to test the thermal stress robustness and degradation, and the resistance at the highest temperature is measured to indicate degradation from thermal stress. The measured efficiency after cycling shows that the FGMs survive longer lifetime than that with uniform small grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hori, D. Kusano, T. Ito, and K. Izumi, in Eighteenth International Conference on Thermoelectrics, pp. 328–331 (1999).

  2. L. Bakhtiaryfard and Y.S. Chen, Adv. Mech. Eng. 7, 152419 (2015).

    Article  Google Scholar 

  3. Y. Obata and N. Noda, J. Therm. Stress. 17, 471 (1994).

    Article  Google Scholar 

  4. D.P.H. Hasselman and G.E. Youngblood, J. Am. Ceram. Soc. 61, 49 (1978).

    Article  Google Scholar 

  5. A. Kawasaki and R. Watanabe, Ceram. Trans. Funct. Gradient Mater. 34, 157 (1993).

    Google Scholar 

  6. H. Takahashi, T. Ishikawa, D. Okugawa, and T. Hashida, Therm. Shock Therm. Fatigue Behav. Adv. Ceram. 241, 543 (1993).

    Article  Google Scholar 

  7. I. Shiota and I. A. Nishida, in XVI International Conference on Thermoelectrics, pp. 364–370 (1997).

  8. Z. Balak, M. Azizieh, H. Kafashan, M.S. Asl, and Z. Ahmadi, Mater. Chem. Phys. 196, 333 (2017).

    Article  Google Scholar 

  9. A.S. Al-Merbati, B.S. Yilbas, and A.Z. Sahin, Appl. Therm. Eng. 50, 683 (2013).

    Article  Google Scholar 

  10. U. Erturun, K. Erermis, and K. Mossi, Appl. Therm. Eng. 73, 128 (2014).

    Article  Google Scholar 

  11. Z.-H. Jin and G.H. Paulino, Int. J. Fract. 107, 73 (2001).

    Article  Google Scholar 

  12. B.L. Wang, Y.B. Guo, and C.W. Zhang, Eng. Fract. Mech. 152, 1 (2016).

    Article  Google Scholar 

  13. M. Sribalaji, B. Mukherjee, S.R. Bakshi, P. Arunkumar, K. Suresh Babu, and A.K. Keshri, Compos. Part B Eng. 123, 227 (2017).

    Article  Google Scholar 

  14. E. Hatzikraniotis, K.T. Zorbas, I. Samaras, T. Kyratsi, and K.M. Paraskevopoulos, J. Electron. Mater. 39, 2112 (2010).

    Article  Google Scholar 

  15. Z. Li, J. Liu, H. Du, S. Li, and P. Zhang, Mater. Sci. Eng. A 517, 154 (2009).

    Article  Google Scholar 

  16. X.Q. You, T.Z. Si, N. Liu, P.P. Ren, Y.D. Xu, and J.P. Feng, Ceram. Int. 31, 33 (2005).

    Article  Google Scholar 

  17. K.H. Kim, S.H. Shim, K.B. Shim, K. Niihara, and J. Hojo, J. Am. Ceram. Soc. 88, 628 (2005).

    Article  Google Scholar 

  18. Y. Kinemuchi, M. Mikami, K. Kobayashi, K. Watari, and Y. Hotta, J. Electron. Mater. 39, 2059 (2009).

    Article  Google Scholar 

  19. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Prog. Mat. Sci. 58, 1443 (2013).

    Article  Google Scholar 

  20. M. Arai, M. Kambe, T. Ogata, and Y. Takahashi, Trans. Jpn. Soc. Mech. Eng. Ser. A 62, 488 (1996).

    Article  Google Scholar 

  21. C.L. Cramer, J. Gonzalez-Julian, P.S. Colasuonno, and T.B. Holland, J. Eur. Ceram. Soc. 37, 4693 (2017).

    Article  Google Scholar 

  22. E. Müller, Č. Drašar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng. A 362, 17 (2003).

    Article  Google Scholar 

  23. Z. Dashevsky, Y. Gelbstein, I. Edry, I. Drabkin, and M.P. Dariel, in Twenty-Second International Conference on Thermoelectrics, pp. 421–424 (2003).

  24. A.E. Kaliazin, V.L. Kuznetsov, and D.M. Rowe, in Twentieth International Conference on Thermoelectrics, pp. 286–292 (2001).

  25. M. He, Y. Zhao, B. Wang, Q. Xi, J. Zhou, and Z. Liang, Small 11, 5889 (2015).

    Article  Google Scholar 

  26. A. El-Desouky, M. Carter, M.A. Andre, P.M. Bardet, and S. LeBlanc, Mater. Lett. 185, 598 (2016).

    Article  Google Scholar 

  27. G.C. Catlin, R. Tripathi, G. Nunes, P.B. Lynch, H.D. Jones, and D.C. Schmitt, J. Power Sources 343, 316 (2017).

    Article  Google Scholar 

  28. M. Søndergaard, E.D. Bøjesen, K.A. Borup, S. Christensen, M. Christensen, and B.B. Iversen, Acta Mater. 61, 3314 (2013).

    Article  Google Scholar 

  29. W. Seifert, K. Zabrocki, E. Müller, and G.J. Snyder, Phys. Status Solidi A 207, 2399 (2010).

    Article  Google Scholar 

  30. Z.-H. Jin, T.T. Wallace, R.J. Lad, and J. Su, J. Electron. Mater. 43, 308 (2013).

    Article  Google Scholar 

  31. Z.-H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).

    Article  Google Scholar 

  32. T.T. Wallace, Z.-H. Jin, and J. Su, J. Electron. Mater. 45, 1 (2016).

    Article  Google Scholar 

  33. T.H. Cross and M.J. Mayo, Nanostructured Mater. 3, 163 (1993).

    Article  Google Scholar 

  34. L. Liu, F. Ye, Y. Zhou, Z. Zhang, and Q. Hou, J. Eur. Ceram. Soc. 30, 2683 (2010).

    Article  Google Scholar 

  35. B. Dargatz, J. Gonzalez-Julian, M. Bram, Y. Shinoda, F. Wakai, and O. Guillon, J. Eur. Ceram. Soc. 36, 1207 (2016).

    Article  Google Scholar 

  36. B. Dargatz, J. Gonzalez-Julian, M. Bram, Y. Shinoda, F. Wakai, and O. Guillon, J. Eur. Ceram. Soc. 36, 1221 (2016).

    Article  Google Scholar 

  37. H.G. Jensen, Am. J. Phys. 38, 870 (1970).

    Article  Google Scholar 

  38. B.M. Gol’tsman and M.G. Komissarchik, J. Eng. Phys. 20, 385 (1971).

    Article  Google Scholar 

  39. M.T. Barako, W. Park, A.M. Marconnet, M. Asheghi, and K.E. Goodson, J. Electron. Mater. 42, 372 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corson L. Cramer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cramer, C.L., Li, W., Jin, ZH. et al. Techniques for Mitigating Thermal Fatigue Degradation, Controlling Efficiency, and Extending Lifetime in a ZnO Thermoelectric Using Grain Size Gradient FGMs. J. Electron. Mater. 47, 866–872 (2018). https://doi.org/10.1007/s11664-017-5879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5879-9

Keywords

Navigation