Skip to main content

Advertisement

Log in

Enhancement of Dielectric Breakdown Strength and Energy Conversion Efficiency of Niobate Glass-Ceramics by Sc2O3 Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Niobate glass-ceramics K2O-SrO-Nb2O5-B2O3-Al2O3-SiO2 (KSN-BAS) doped with different amounts of Sc2O3 have been prepared through a melt quenching/controlled crystallization method, and the influence of the Sc2O3 content on their phase composition, microstructure, dielectric performance, and charge–discharge properties investigated. X-ray powder diffraction results showed that the peak positions of the KSr2Nb5O15 phase shifted to higher angle and the glass-ceramic microstructures were significantly improved by Sc2O3 addition. Based on these results, 0.5 mol.% Sc2O3 doping was found to achieve remarkable enhancement in energy storage density, which reached 9.63 ± 0.39 J/cm3 at dielectric breakdown strength of 1450.38 ± 29.01 kV/cm with high conversion efficiency of ∼ 92.1%. For pulsed power applications, discharge speed of 17 ns and power density of 0.48 MW/cm3 were obtained in the glass-ceramic with 0.5 mol.% Sc2O3. These results could provide a new design strategy for high-performance dielectric capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. Gorzkowski, M.J. Pan, and B.A. Bender, J. Am. Ceram. Soc. 91, 1065 (2008).

    Article  Google Scholar 

  2. B. Chu, X. Zhou, B. Neese, Q.M. Zhang, and F. Bauer, IEEE. Trans. Dielectr. Electr. Insul. 13, 1162 (2006).

    Article  Google Scholar 

  3. L.A. Fredin, Z. Li, M.A. Ratner, M.T. Lanagan, and T.J. Marks, Adv. Funct. Mater. 23, 3560 (2013).

    Article  Google Scholar 

  4. H. Tang and H.A. Sodano, Nano Lett. 13, 1373 (2013).

    Article  Google Scholar 

  5. Z. Pan, L. Yao, J. Zhai, H. Wang, and B. Shen, ACS Appl. Mater. Interfaces 9, 14337 (2017).

    Article  Google Scholar 

  6. Z. Pan, L. Yao, J. Zhai, K. Yang, B. Shen, and H. Wang, ACS Sustain. Chem. Eng. 5, 4707 (2017).

    Google Scholar 

  7. N.J. Smith, B. Rangarajan, M.T. Lanagan, and C.G. Pantano, Mater. Lett. 63, 1245 (2009).

    Article  Google Scholar 

  8. C.T. Cheng, M. Lanagan, J.T. Lin, B. Jones, and M.J. Pan, J. Mater. Res. 20, 438 (2005).

    Article  Google Scholar 

  9. Y. Zhang, X.R. Wang, X.Z. Song, T. Ma, and Q. Zhang, J. Mater. Sci. Mater. Electron. 23, 2301 (2012).

    Article  Google Scholar 

  10. J. Huang, Y. Zhang, T. Ma, H. Li, and L. Zhang, Appl. Phys. Lett. 96, 042902 (2010).

    Article  Google Scholar 

  11. J.W. Wang, L.J. Tang, B. Shen, and J.W. Zhai, J. Mater. Res. 29, 288 (2014).

    Article  Google Scholar 

  12. Q. Jin, Y.P. Pu, C. Wang, Z.Y. Gao, Y.R. Wang, H.Y. Zheng, and M.T. Yan, Mater. Lett. 188, 159 (2017).

    Article  Google Scholar 

  13. G.H. Cheng, J. Zheng, C.L. Yuan, C.R. Zhou, X.L. Kang, J.W. Xu, and Y. Yang, Mater. Lett. 176, 46 (2016).

    Article  Google Scholar 

  14. S.X. Xue, S.H. Liu, W.Q. Zhang, B. Shen, and J.W. Zhai, Ceram. Int. 41, 441 (2015).

    Article  Google Scholar 

  15. Y. Zhou, Q. Zhang, J. Luo, Q. Tang, and J. Du, Scr. Mater. 65, 296 (2011).

    Article  Google Scholar 

  16. S. Xiao, S.M. Xiu, B. Shen, and J.W. Zhai, J. Mater. Sci. 51, 5880 (2016).

    Article  Google Scholar 

  17. A. Masuno, H. Inoue, Y. Arai, J. Yu, C. Moriyoshi, and Y. Kuroiwa, J. Non-Cryst. Solids 358, 3505 (2012).

    Article  Google Scholar 

  18. H. Liu, X. Wang, Z. Wang, and B. Zhang, Rare Met. Mater. Eng. 42, 926 (2013).

    Article  Google Scholar 

  19. Y. Zhou, Y. Qiao, Y. Tian, K. Wang, G. Li, and Y. Chai, J. Eur. Ceram. Soc. 37, 995 (2017).

    Article  Google Scholar 

  20. J. Shyu and C. Chen, Ceram. Inter. 29, 447 (2003).

    Article  Google Scholar 

  21. E.K. Müller and B.J. Nicholson, J. Am. Ceram. Soc. 45, 250 (2010).

    Article  Google Scholar 

  22. J. Du and B. Jones, Mater. Lett. 59, 2821 (2005).

    Article  Google Scholar 

  23. A. Kishimoto, K. Koumoto, and H. Yanagida, J. Mater. Sci. 24, 698 (1989).

    Article  Google Scholar 

  24. A.L. Young, G.E. Hilmas, S.C. Zhang, and R.W. Schwartz, J. Mater. Sci. 42, 5613 (2007).

    Article  Google Scholar 

  25. D. McCauley, R.E. Newham, and C.A. Randall, J. Am. Ceram. Soc. 81, 97 (2010).

    Google Scholar 

  26. J.C. Jackson, T. Robinson, O. Oralkan, D.J. Dumin, and G.A. Brown, IPFA 145, 146 (1997).

    Google Scholar 

  27. S. Xiao, S.M. Xiu, S.X. Xue, B. Shen, and J.W. Zhai, J. Alloys Compd. 648, 745 (2015).

    Article  Google Scholar 

  28. S. Liu, B. Wan, P. Wang, and S. Song, Scr. Mater. 63, 124 (2010).

    Article  Google Scholar 

  29. Z. Pan, L. Yao, J. Zhai, B. Shen, and H. Wang, Compos. Sci. Technol. 147, 30 (2017).

    Article  Google Scholar 

  30. Z. Pan, B. Liu, J. Zhai, L. Yao, K. Yang, and B. Shen, Nano Energy 40, 587 (2017).

    Article  Google Scholar 

  31. J. Zhu, Y. Zhang, X. Song, Q. Zhang, D. Yang, and Y. Chen, Phys. Status Solidi A 212, 282 (2015).

    Article  Google Scholar 

  32. Y. Zhang, J.J. Huang, T. Ma, X.R. Wang, C.S. Deng, and X.M. Dai, J. Am. Ceram. Soc. 94, 1805 (2011).

    Article  Google Scholar 

  33. S. Xiao, S.M. Xiu, B. Shen, and J.W. Zhai, J. Eur. Ceram. Soc. 36, 4071 (2016).

    Article  Google Scholar 

  34. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, and A.C.S. Appl, Mater. Interfaces 9, 4024 (2017).

    Article  Google Scholar 

  35. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, and Q. Wang, Science 313, 334 (2006).

    Article  Google Scholar 

  36. Z.B. Pan, J.W. Zhai, and B. Shen, J. Mater. Chem. A 5, 15217 (2017).

    Article  Google Scholar 

  37. Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu, H. Wang, and J. Liu, J. Mater. Chem. A 4, 13259 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Xiu, S., Yang, K. et al. Enhancement of Dielectric Breakdown Strength and Energy Conversion Efficiency of Niobate Glass-Ceramics by Sc2O3 Doping. J. Electron. Mater. 47, 834–842 (2018). https://doi.org/10.1007/s11664-017-5868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5868-z

Keywords

Navigation