Skip to main content
Log in

Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 (x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%–1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. G.J. Tan, L.D. Zhao, and M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  Google Scholar 

  4. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  5. F. Steglich, Phys. Rev. Lett. 43, 1892 (1979).

    Article  Google Scholar 

  6. G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    Article  Google Scholar 

  7. G.R. Stewart, Z. Fisk, and M.S. Wire, Phys. Rev. B 30, 482 (1984).

    Article  Google Scholar 

  8. P. Strange, A. Svane, W.M. Temmerman, Z. Szotek, and H. Winter, Nature 399, 756 (1999).

    Article  Google Scholar 

  9. J. Zhou, B. Sa, and Z. Sun, Intermetallics 18, 2394 (2010).

    Article  Google Scholar 

  10. M. Očko, S. Žonja, I. Aviani, E.D. Bauerc, and J.L. Sarrao, J. Alloy. Compd. 509, 6999 (2011).

    Article  Google Scholar 

  11. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  Google Scholar 

  12. P. Wei, W.Y. Zhao, C.L. Dong, X. Yang, J. Yu, and Q.J. Zhang, Acta Mater. 59, 3244 (2011).

    Article  Google Scholar 

  13. L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141 (2016).

    Article  Google Scholar 

  14. W.Y. Zhao, Z.Y. Liu, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, and Y.Z. Pei, Nat. Nanotechnol. 12, 55 (2017).

    Article  Google Scholar 

  15. G.J. Lehr and D.T. Morelli, Intermetallics 32, 225 (2013).

    Article  Google Scholar 

  16. G.J. Lehr and D.T. Morelli, J. Electron. Mater. 42, 1697 (2013).

    Article  Google Scholar 

  17. J.Q. Li, X.Y. Liu, Y. Li, S.H. Song, F.S. Liu, and W.Q. Ao, J. Alloy. Compd. 600, 8 (2014).

    Article  Google Scholar 

  18. S. Katsuyama, M. Suzuki, and T. Tanaka, J. Alloy. Compd. 513, 189 (2012).

    Article  Google Scholar 

  19. J.Q. Li, X.Y. Liu, Y. Li, J.F. Deng, R.F. Ye, S.H. Song, F.S. Liu, and W.Q. Ao, J. Electron. Mater. 43, 1289 (2014).

    Article  Google Scholar 

  20. D.Q. He, W.Y. Zhao, X. Mu, H.Y. Zhou, and Q.J. Zhang, J. Electron. Mater. 44, 1919 (2015).

    Article  Google Scholar 

  21. E. Emadoddin, A. Akbarzadeh, and G. Daneshi, Mater. Charact. 57, 408 (2006).

    Article  Google Scholar 

  22. D.P. Rojas, L.F. Barquín, J.I. Espeso, J.R. Fernández, and J. Chaboy, Phys. Rev. B 78, 094412 (2008).

    Article  Google Scholar 

  23. J. Zhou, Z. Sun, X. Cheng, and Y. Zhang, Intermetallics 17, 995 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wei or Wenyu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Mu, X., Zhou, H. et al. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials. J. Electron. Mater. 47, 3338–3343 (2018). https://doi.org/10.1007/s11664-017-5842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5842-9

Keywords

Navigation