Skip to main content

Advertisement

Log in

Numerical Optimization of a Bifacial Bi-Glass Thin-Film a-Si:H Solar Cell for Higher Conversion Efficiency

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bifacial solar cells that maximize the energy output per a square meter have become a new fashion in the field of photovoltaic cells. However, the application of thin-film material on bifacial solar cells, viz., thin-film amorphous hydrogenated silicon (a-Si:H), is extremely rare. Therefore, this paper presents the optimization and influence of the band gap, thickness and doping on the performance of a glass/glass thin-film a-Si:H (n-i-p) bifacial solar cell, using a computer-aided simulation tool, Automat for simulation of hetero-structures (AFORS-HET). It is worth mentioning that the thickness and the band gap of the i-layer are the key parameters in achieving higher efficiency and hence it has to be handled carefully during the fabrication process. Furthermore, an efficient thin-film a-Si:H bifacial solar cell requires thinner and heavily doped n and p emitter layers. On the other hand, the band gap of the p-layer showed a dramatic reduction of the efficiency at 2.3 eV. Moreover, a high bifaciality factor of more than 92% is attained, and top efficiency of 10.9% is revealed under p side illumination. These optimizations demonstrate significant enhancements of the recent experimental work on thin-film a-Si:H bifacial solar cells and would also be useful for future experimental investigations on an efficient a-Si:H thin-film bifacial solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sharma and J.A. Aragón Correa, Corporate Environmental Strategy and Competitive Advantage (Cheltenham: Edward Elgar Publishing Ltd, 2005).

    Book  Google Scholar 

  2. P. Gadonneix, N. Marie-José, and D.K. Younghoon, World Energy Scenarios Composing Energy Futures to 2050, https://www.worldenergy.org/publications/2013/world-energy-scenarios-composing-energy-futures-to-2050/. Accessed 07 May, 2017.

  3. A. Goetzberger, C. Hebling, and H.W. Schock, Mater. Sci. Eng. R 40, 1 (2003).

    Article  Google Scholar 

  4. H. Mori, mM/ w -RADIATION ENERGY TRANSDUCING DEVICE, http://www.google.tl/patents/US3173378, 1966. Accessed 07 May, 2017.

  5. A. Luque, J. M. Ruiz, A. Cuevas, J. Eguren, and M. G. Agost, in Photovolt. Sol. Energy Conf. (1978), pp. 269–277.

  6. L. Kreinin, N. Bordin, A. Karsenty, A. Drori, and N. Eisenberg, in 26th Eur. Photovolt. Sol. Energy Conf. Exhib. Hambourg, Allemagne (2011), pp. 3140–3143.

  7. A. Cuevas, A. Luque, J. Eguren, and J. del Alamo, Sol. Energy 29, 419 (1982).

    Article  Google Scholar 

  8. A. Hubner, A. Aberle, and R. Hezel, in Conf. Rec. Twenty Sixth IEEE Photovolt. Spec. Conf. (1997), pp. 223–226.

  9. I. Araki, M. Tatsunokuchi, H. Nakahara, and T. Tomita, Sol. Energy Mater. Sol. Cells, 911 (2009).

  10. R. Auer, B. Mayregger, and R. Hezel, in I lth Symposium on Photovoltaic Solar Energy (1996), pp. 100–104.

  11. P.G. Carey, R.C. Aceves, and N.J. Colella, in Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference (1994), pp. 1963–1969.

  12. L. Prat,. R. Alcubill, E. Blasco, E. Garcia, J. Calderer, X. Correig, and L. Castañer, Sol. Cells, 303 (1990).

  13. International Technology Roadmap for Photovoltaic (ITRPV). Sixth edition, http://www.itrpv.net/Reports/Downloads/2015/. Accessed 05.August.2017.

  14. N. Dwivedi, S. Kumar, A. Bisht, K. Patel, and S. Sudhakar, Sol. Energy 88, 31 (2013).

    Article  Google Scholar 

  15. K. Lam, B. Chris, L. Chris, E. Christoph, H. Zhiquan, X. Zheng, J.B. Heng, F. Jianming, K. Bob, C. Yongkee, W. Wei, W. Zhigang, and R. Anand, IEEE J. Photovoltaics, 82 (2015).

  16. K. Krau, F. Fertig, J. Greulich, S. Rein, R. Preu, and R. Preu, Prog. Photovoltaics Res. Appl. 24, 800–817 (2016).

    Article  Google Scholar 

  17. J. Arumughan, R. Kopecek, T. Pernau, T. Buck, P. Fath, and K. Peter, in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference (2006), pp. 1103–1106.

  18. F. Fertig, K. Krau, J. Greulich, F. Clement, D. Biro, R. Preu, and S. Rein, Energy Procedia, 416 (2014).

  19. H. Ohtsuka, M. Sakamoto, K. Tsutsui, T. Uematsu, and Y. Yazawa, Prog. Photovolt: Res. Appl. 9, 1 (2001).

    Article  Google Scholar 

  20. K. von, M. N. Reininghaus, and C. Feser, in Conference PVSEC (2014), pp. 461–468.

  21. A. Froitzheim, R. Stangl, L. Elstner, M. Schmidt, and W. Fuhs, in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference (2002), pp. 1238–1241.

  22. J. Frank, M. Rüdiger, S. Fischer, J.C. Goldschmidt, and M. Hermle, Energy Procedia 27, 300 (2012).

    Article  Google Scholar 

  23. M. Tucci, M. Della Noce, E. Bobeico, F. Roca, G. De Cesare, and F. Palma, Thin Solid Films 451, 355 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djaber Berrian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrian, D., Fathi, M. & Kechouane, M. Numerical Optimization of a Bifacial Bi-Glass Thin-Film a-Si:H Solar Cell for Higher Conversion Efficiency. J. Electron. Mater. 47, 1140–1150 (2018). https://doi.org/10.1007/s11664-017-5828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5828-7

Keywords

Navigation