Advertisement

Journal of Electronic Materials

, Volume 47, Issue 1, pp 103–109 | Cite as

Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics

  • Eric Chason
  • Justin Vasquez
  • Fei Pei
  • Nupur Jain
  • Andrew Hitt
Article

Abstract

Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

Keywords

Tin whiskering thermal cycling nucleation stress relaxation kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NASA. Multiple examples of whisker-induced failures are documented on the NASA website. http://nepp.nasa. gov/whisker/
  2. 2.
    S.M. Arnold, Plating 53, 96 (1966).Google Scholar
  3. 3.
    K.J. Puttlitz and G.T. Galyon, J. Mater. Sci.: Mater. Electron. 18, 347 (2007).Google Scholar
  4. 4.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  5. 5.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).CrossRefGoogle Scholar
  6. 6.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).CrossRefGoogle Scholar
  7. 7.
    J. Smetana, IEEE Trans. Electron. Pack. Manuf. 30, 11 (2007).CrossRefGoogle Scholar
  8. 8.
    K.N. Tu, Phys. Rev. B 49, 2030 (1994).CrossRefGoogle Scholar
  9. 9.
    K. Suganuma, A. Baated, K.S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, and T. Yamada, Acta Mater. 59, 7255 (2011).CrossRefGoogle Scholar
  10. 10.
    F. Pei, A.F. Bower, and E. Chason, J. Electron. Mater. 45, 21 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, J.E. Blendell, and C.A. Handwerker, J. Mater. Sci. 49, 1099 (2014).CrossRefGoogle Scholar
  12. 12.
    S.K. Lin, Y. Yorikado, J.X. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, J. Electron. Mater. 36, 1732 (2007).CrossRefGoogle Scholar
  13. 13.
    R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metall. 2, 368 (1954).CrossRefGoogle Scholar
  14. 14.
    G.T. Galyon, IEEE Trans. Electron. Pack. Manuf. 28, 94 (2005).CrossRefGoogle Scholar
  15. 15.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Prog. Surf. Sci. 88, 103 (2013).CrossRefGoogle Scholar
  16. 16.
    F. Pei and E. Chason, J. Electron. Mater. 43, 80 (2013).CrossRefGoogle Scholar
  17. 17.
    E. Chason and F. Pei, JOM 67, 2416 (2015).CrossRefGoogle Scholar
  18. 18.
    E. Chason and P.R. Guduru, J. Appl. Phys. 119, 191101 (2016).CrossRefGoogle Scholar
  19. 19.
    L.B. Freund and S. Suresh, Thin Film Materials (Cambridge: Cambridge University Press, 2003).Google Scholar
  20. 20.
    F. Pei, C.L. Briant, H. Kesari, A.F. Bower, and E. Chason, Scr. Mater. 93, 16 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Weertman and J.E. Breen, J. Appl. Phys. 27, 1189 (1956).CrossRefGoogle Scholar
  22. 22.
    J.W. Shin and E. Chason, J. Mater. Res. 24, 1522 (2011).CrossRefGoogle Scholar
  23. 23.
    F. Pei, E. Buchovecky, A. Bower, and E. Chason, Acta Mater. 129, 462 (2017).CrossRefGoogle Scholar
  24. 24.
    E. Chason, F. Pei, C.L. Briant, H. Kesari, and A.F. Bower, J. Electron. Mater. 43, 4435 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of EngineeringBrown UniversityProvidenceUSA
  2. 2.Amphenol-TCSNashuaUSA

Personalised recommendations