Journal of Electronic Materials

, Volume 47, Issue 1, pp 27–34 | Cite as

Electrodeposition of Ni on Bi2Te3 and Interfacial Reaction Between Sn and Ni-Coated Bi2Te3

  • Yu-Chen Tseng
  • Hsuan Lee
  • Nga Yu Hau
  • Shien-Ping Feng
  • Chih-Ming ChenEmail author


Bismuth-telluride (Bi2Te3)-based compounds are common thermoelectric materials used for low-temperature applications, and nickel (Ni) is usually deposited on the Bi2Te3 substrates as a diffusion barrier. Deposition of Ni on the p-type (Sb-doped) and n-type (Se-doped) Bi2Te3 substrates using electroplating and interfacial reactions between Sn and Ni-coated Bi2Te3 substrates are investigated. Electrodeposition of Ni on different Bi2Te3 substrates is characterized based on cyclic voltammetry and Tafel measurements. Microstructural characterizations of the Ni deposition and the Sn/Ni/Bi2Te3 interfacial reactions are performed using scanning electron microscopy. A faster growth rate is observed for the Ni deposition on the n-type Bi2Te3 substrate which is attributed to a lower activation energy of reduction due to a higher density of free electrons in the n-type Bi2Te3 material. The common Ni3Sn4 phase is formed at the Sn/Ni interfaces on both the p-type and n-type Bi2Te3 substrates, while the NiTe phase is formed at a faster rate at the interface between Ni and n-type Bi2Te3 substrates.


Electroplating Ni thermoelectric intermetallic compound 



The authors gratefully acknowledge Dr. J.-D. Hwang from the Industrial Technology Research Institute of Taiwan for providing the TE materials. The authors gratefully acknowledge the financial support from the Ministry of Science and Technology, Taiwan (MOST-105-2221-E-005-087).


  1. 1.
    M.S. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  2. 2.
    D.M. Rowe, General principles and basic considerations, in Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2005), pp. 1-1–1-14.Google Scholar
  3. 3.
    D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, and A. Muto, Nat. Mater. 10, 532 (2011).CrossRefGoogle Scholar
  4. 4.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  5. 5.
    G.J. Snyder, Appl. Phys. Lett. 84, 2436 (2004).CrossRefGoogle Scholar
  6. 6.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Ye, J.D. Hwang, and C.M. Chen, Metall. Mater. Trans. A 46, 2372 (2015).CrossRefGoogle Scholar
  8. 8.
    H.T. Chan, C.F. Lin, Y.W. Yen, and C.M. Chen, J. Alloys Compd. 668, 91 (2016).CrossRefGoogle Scholar
  9. 9.
    S.W. Chen, H.J. Wu, C.Y. Wu, C.F. Chang, and C.Y. Chen, J. Alloys Compd. 553, 106 (2013).CrossRefGoogle Scholar
  10. 10.
    C.N. Chiu, C.H. Wang, and S.W. Chen, J. Electron. Mater. 37, 40 (2008).CrossRefGoogle Scholar
  11. 11.
    C.N. Chiu, C.M. Hsu, S.W. Chen, and H.J. Wu, J. Electron. Mater. 41, 22 (2012).CrossRefGoogle Scholar
  12. 12.
    T.Y. Lin, C.N. Liao, and A.T. Wu, J. Electron. Mater. 41, 153 (2012).CrossRefGoogle Scholar
  13. 13.
    O.D. Iyore, T.H. Lee, R.P. Gupta, J.B. White, H.N. Alshareef, M.J. Kim, and B.E. Gnade, Surf. Interface Anal. 41, 440 (2009).CrossRefGoogle Scholar
  14. 14.
    C.C. Li, Z.X. Zhu, L.L. Liao, M.J. Dai, C.K. Liu, and C.R. Kao, Sci. Technol. Weld. Join. 18, 421 (2013).CrossRefGoogle Scholar
  15. 15.
    C.F. Lin, N.Y. Hau, Y.T. Huang, Y.H. Chang, S.P. Feng, and C.M. Chen, J. Alloys Compd. 708, 220 (2017).CrossRefGoogle Scholar
  16. 16.
    C.Y. Ko and A.T. Wu, J. Electron. Mater. 41, 3320 (2012).CrossRefGoogle Scholar
  17. 17.
    C.P. Lin and C.M. Chen, J. Alloys Compd. 547, 37 (2013).CrossRefGoogle Scholar
  18. 18.
    C.Y. Lee, T.H. Huang, and S.C. Lu, J. Mater. Sci. Mater. Electron. 9, 337 (1998).CrossRefGoogle Scholar
  19. 19.
    Y.R. Chen, W.S. Hwang, H.L. Hsieh, J.Y. Huang, T.K. Huang, and J.D. Hwang, J. Cryst. Growth 402, 273 (2014).CrossRefGoogle Scholar
  20. 20.
    M. Ettenberg, J. Maddux, P. Taylor, W. Jesser, and F. Rosi, J. Cryst. Growth 179, 495 (1997).CrossRefGoogle Scholar
  21. 21.
    H.P. Ha, D.B. Hyun, J.Y. Byun, Y.J. Oh, and E.P. Yoon, J. Mater. Sci. 37, 4691 (2002).CrossRefGoogle Scholar
  22. 22.
    D. Teweldebrhan, V. Goyal, M. Rahman, and A.A. Balandin, Appl. Phys. Lett. 96, 053107 (2010).CrossRefGoogle Scholar
  23. 23.
    D. Teweldebrhan, V. Goyal, and A.A. Balandin, Nano Lett. 10, 1209 (2010).CrossRefGoogle Scholar
  24. 24.
    C.S. Barrett and T.B. Massalski, Structure of Metals (Oxford: Pergamon Press, 1980), p. 204.Google Scholar
  25. 25.
    X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan, J. Phys. D Appl. Phys. 39, 740 (2006).CrossRefGoogle Scholar
  26. 26.
    S.P. Feng, Y.H. Chang, J. Yang, B. Poudel, B. Yu, Z. Ren, and G. Chen, Phys. Chem. Chem. Phys. 15, 6757 (2013).CrossRefGoogle Scholar
  27. 27.
    D. Pletcher, R. Greff, R. Peat, L.M. Peter, and J. Robinson, Instrumental Methods in Electrochemistry, Ch. 3 (West Sussex: Ellis Horwood, 1985), pp. 76–112.Google Scholar
  28. 28.
    Y. Zhang, X. Jia, L. Deng, X. Guo, H. Sun, B. Sun, B. Liu, and H. Ma, J. Alloys Compd. 632, 514 (2015).CrossRefGoogle Scholar
  29. 29.
    W.K. Liao, C.M. Chen, M.T. Lin, and C.H. Wang, Scr. Mater. 65, 691 (2011).CrossRefGoogle Scholar
  30. 30.
    C.M. Chen and S.W. Chen, Acta Mater. 50, 2461 (2002).CrossRefGoogle Scholar
  31. 31.
    Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 101910-3 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Mechanical EngineeringThe University of Hong KongHong KongHong Kong

Personalised recommendations