Skip to main content
Log in

Effect of A-Site Non-stoichiometry on Structure and Microwave Dielectric Properties of Ca x (Li0.36Nd0.36Bi0.14Na0.14)TiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

By adding a small amount of calcium to the starting composition, Li0.36Nd0.36Bi0.14Na0.14TiO3, oxygen vacancies are suppressed and, therefore, the microwave properties are enhanced. This study not only obtained a kind of ceramic with excellent microwave dielectric properties, ε r ∼ 160, Q × f ∼ 1300 GHz and τ f ∼ 10 ppm/°C, but also gives a way to optimize the compositions with various donor and acceptor dopants for better performance in microwave ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Liu, L. Li, X.Q. Liu, and X.M. Chen, J. Mater. Chem. C. 4, 4684 (2016).

    Article  Google Scholar 

  2. X.Y. Chen, W.J. Zhang, B. Zalinska, and I. Sterianou, J. Am. Ceram. Soc. 95, 3207 (2012).

    Article  Google Scholar 

  3. W. Jo, R. Dittmer, M. Acosta, J.D. Zang, and C. Groh, J. Electroceram. 29, 2429 (2012).

    Article  Google Scholar 

  4. W.S. Kim, L.H. Yoon, and E.S. Kim, Mater. Res. Bull. 34, 2309 (1999).

    Article  Google Scholar 

  5. E.S. Kim and K.H. Yoon, J. Eur. Ceram. Soc. 23, 2397 (2003).

    Article  Google Scholar 

  6. X. Chen, S. Bai, and W. Zhang, J. Alloys Compd. 541, 132 (2012).

    Article  Google Scholar 

  7. W. Zhang, X. Chen, A. Jia, and S. Bai, Int. J. Mod. Phys. B 29, 1540026 (2015).

    Article  Google Scholar 

  8. D.A. Aziz, I. Sterianou, and I.M. Reaney, J. Mater. Sci. 44, 6247 (2009).

    Article  Google Scholar 

  9. T. Liu, Z.Z. Zhao, and W. Chen, J. Am. Ceram. Soc. 89, 1153 (2006).

    Article  Google Scholar 

  10. G. Huang, D. Zhou, J. Xu, Z. Zheng, and S. Gong, Mater. Res. Bull. 40, 13 (2005).

    Article  Google Scholar 

  11. C. Zhou, G. Chen, Z. Cen, C. Yuan, and Y. Yang, Mater. Res. Bull. 48, 4924 (2013).

    Article  Google Scholar 

  12. H.L. Chen and C.L. Huang, Jpn. J. Appl. Phys. 41, 5650 (2002).

    Article  Google Scholar 

  13. K. Yan, M. Fuji, and T. Karaki, Jpn. J. Appl. Phys. 46, 7105 (2007).

    Article  Google Scholar 

  14. C. Huang, J. Tsai, and Y. Chen, Mater. Res. Bull. 36, 547 (2001).

    Article  Google Scholar 

  15. W.S. Kim, E.S. Kim, and K.H. Yoon, Ferroelectrics 223, 277 (1999).

    Article  Google Scholar 

  16. Z. Liang, L.L. Yuan, and J.J. Bian, J. Alloys Compd. 509, 1893 (2011).

    Article  Google Scholar 

  17. N. Ichinose and K. Mutoh, J. Eur. Ceram. Soc. 23, 2455 (2003).

    Article  Google Scholar 

  18. H. Ogihara, C.A. Randall, and S.T. McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009).

    Article  Google Scholar 

  19. M. Mirsaneh, O.P. Listen, B. Zalinska, and I.M. Reaney, Adv. Funct. Mater. 18, 2293 (2008).

    Article  Google Scholar 

  20. T. Lowe, F. Azough, and R. Freer, J. Eur. Ceram. Soc. 23, 2429 (2003).

    Article  Google Scholar 

  21. R.Z. Zuo, S. Su, Y. Wu, J. Fu, M. Wang, and L.T. Li, Mater. Chem. Phys. 110, 311 (2008).

    Article  Google Scholar 

  22. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, and M.H. Kim, Appl. Phys. Lett. 98, 012902 (2011).

    Article  Google Scholar 

  23. Y. Hiruma, H. Nagata, and T. Takenaka, J. Appl. Phys. 105, 084112 (2009).

    Article  Google Scholar 

  24. J. Carter, E. Aksel, T. Iamsasri, J.S. Forrester, and J. Chen, Appl. Phys. Lett. 104, 112904 (2014).

    Article  Google Scholar 

  25. A.G. Belous, O.V. Ovchar, A.V. Krameeranko, B. Jancar, J. Bezjak, and D. Suvorov, Inorg. Mater. 46, 529 (2010).

    Article  Google Scholar 

  26. D.A. Durilin, O.V. Ovchar, and A.G. Belous, Inorg. Mater. 47, 313 (2011).

    Article  Google Scholar 

  27. K.P. Surendran, M.T. Sebastian, P. Mohanan, R.L. Moreira, and A. Dias, Chem. Mater. 17, 142 (2005).

    Article  Google Scholar 

  28. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhangand, and I.M. Reaney, Nat. Mater. 13, 31 (2014).

    Article  Google Scholar 

  29. M. Li, H. Zhang, S.N. Cook, L. Li, and J.A. Kilner, Chem. Mater. 27, 629 (2015).

    Article  Google Scholar 

  30. M. Li, L.H. Li, J.D. Zang, and D.C. Sinclair, Appl. Phys. Lett. 106, 102904 (2015).

    Article  Google Scholar 

  31. X. Liu, C.L. Yuan, X.Y. Liu, Y. Li, G.H. Chen, and X.Q. Li, J. Alloys Compd. 698, 329 (2017).

    Article  Google Scholar 

  32. B. Ullah, W. Lei, Q.S. Cao, Z.Y. Zou, and X.K. Lan, J. Am. Ceram. Soc. 99, 3286 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports of Guangxi Key Laboratory of Information Materials (Grant No. 151003-Z) and the National Natural Science Foundation of China (Grant No. 11464006) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yuan, C., Luo, F. et al. Effect of A-Site Non-stoichiometry on Structure and Microwave Dielectric Properties of Ca x (Li0.36Nd0.36Bi0.14Na0.14)TiO3 Ceramics. J. Electron. Mater. 47, 285–291 (2018). https://doi.org/10.1007/s11664-017-5760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5760-x

Keywords

Navigation