Skip to main content
Log in

Die-Bonding of LED Chips on Ag/Cu Substrate Using Sn/Zn/Bi/Sn and Sn/Bi/Zn/Bi/Sn Bonding Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two multilayer bonding structures have been designed to die-bond light-emitting diode (LED) chips on Ag/Cu thermal substrate, viz. Sn/ZnBi/Sn bilayer solder structure and Sn/BiZnBi/Sn sandwich solder structure. Both multilayer bonding structures successfully achieved LED chip die-attachment on Ag/Cu thermal substrate at relatively low temperature of 150°C. However, voids formed more seriously at the bonding interface for the Sn/ZnBi/Sn bilayer structure. On the other hand, little voiding was seen at the bonding interface for the Sn/BiZnBi/Sn sandwich structure. The average shear strength of the Sn/ZnBi/Sn bilayer solder structure and Sn/BiZnBi/Sn sandwich solder structure was 25 MPa and 40 MPa, respectively. We believe that the improved shear strength results for the sandwich solder structure compared with the bilayer solder structure are mainly due to less voiding at the bonding interface, which weakens the interface joint shear strength. Also, the intermetallic compounds (IMCs) jointing region at the joint interface of the sandwich solder structure was larger than at the joint interface of the bilayer solder structure. We believe that the IMC jointing at the interface could improve the die-bonding strength, while the Zn content in the bonding structure promoted voiding at the bonding interface for both solder structures. Moreover, the Zn content in the bonding structure slightly reduced the IMC joint region at the bonding interface for both solder structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Lavrinovich, Y.T. Rebane, D.V. Tarkhin, and Y.G. Shreter, Semiconductors 40, 605 (2006).

    Article  Google Scholar 

  2. N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).

    Article  Google Scholar 

  3. M. Arik, C. Becker, S. Weaver, and J. Petroski, Proc. SPIE 5187, 65 (2004).

    Google Scholar 

  4. C.C. Lee, C.Y. Wang, and G.S. Matijasevic, IEEE Trans. Compon. Hybrids. Manuf. Technol. 14, 407 (1991).

    Article  Google Scholar 

  5. D.G. Ivey, Micron 29, 281 (1998).

    Article  Google Scholar 

  6. H.G. Song, J.P. Ahn, and J.W. Morris, J. Electron. Mater. 30, 1083 (2001).

    Article  Google Scholar 

  7. C.J. Müller, V. Bushlya, M. Ghasemi, S. Lidin, M. Valldor, and F. Wang, J. Mater. Sci. 50, 7808 (2015).

    Article  Google Scholar 

  8. G.S. Matijasevic, C.C. Lee, and C.Y. Wang, Thin Solid Films 223, 276 (1993).

    Article  Google Scholar 

  9. D.Q. Yu, H.P. Xie, and L. Wang, J. Alloys Compd. 385, 119 (2004).

    Article  Google Scholar 

  10. J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, and S.B. Jung, J. Alloys Compd. 486, 142 (2009).

    Article  Google Scholar 

  11. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, and J. Luo, J. Mater. Sci.: Mater. Electron. 21, 421 (2010).

    Google Scholar 

  12. T. Shrestha, S. Gollapudi, I. Charit, and K.L. Murty, J. Mater. Sci. 49, 2127 (2014).

    Article  Google Scholar 

  13. F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, and G. Ennas, J. Alloys Compd. 623, 7 (2015).

    Article  Google Scholar 

  14. Y. Shu, K. Rajathurai, F. Gao, Q. Cui, and Z. Gu, J. Alloys Compd. 626, 391 (2015).

    Article  Google Scholar 

  15. F. Hua, Z. Mei, and J. Glazer, in 1998 48th IEEE Electronic Components and Technology Conference (1998), pp. 277–283

  16. T.H. Wang, H. Lee, C.M. Chen, M.G. Chen, C.C. Hu, Y.J. Chen, and R.H. Horng, Microelectron. Reliab. 63, 68 (2016).

    Article  Google Scholar 

  17. L.C. Cheng, C.M. Chen, M.G. Chen, C.C. Hu, H.Y. Jiang, R.H. Horng, and D.S. Wuu, IEEE Electron Device Lett. 36, 835 (2015).

    Article  Google Scholar 

  18. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, and M. Ragab, J. Alloys Compd. 614, 20 (2014).

    Article  Google Scholar 

  19. H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, and M. Lu, Mater. Sci. Eng. A 527, 1343 (2010).

    Article  Google Scholar 

  20. L. Zhang, J.G. Han, C.W. He, and Y.H. Guo, J. Mater. Sci.: Mater. Electron. 23, 1950 (2012).

    Google Scholar 

  21. R. Mayappan, I. Yahya, N.A. Ab Ghani, and H.A. Hamid, J. Mater. Sci.: Mater. Electron. 25, 2913 (2014).

    Google Scholar 

  22. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, and W.W. Scott (eds.), American Society for Metals, vol. 1, 2 (Metals Park, 1986)

Download references

Acknowledgements

This work was supported in part by MOST programs 106-3113-E-008-002-CC2, MOST105-2221-E-008-104-MY3, and MOST104-2221-E-008-112-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y.K., Lin, E.J., Wang, J.Y. et al. Die-Bonding of LED Chips on Ag/Cu Substrate Using Sn/Zn/Bi/Sn and Sn/Bi/Zn/Bi/Sn Bonding Systems. J. Electron. Mater. 47, 77–83 (2018). https://doi.org/10.1007/s11664-017-5754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5754-8

Keywords

Navigation