Skip to main content
Log in

Thermal Stability and Electrical Transport Properties of Single-Crystalline β-Zn4Sb3 Co-doped by Ga/Sn

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, Ga/Sn co-doped single-crystal β-Zn4Sb3 were prepared by a Sn-flux method based on stoichiometric ratios of Zn4−x Sb3Ga x Sn3 (x = 0, 0.25, 0.5, 0.6 and 0.75). The effect of Ga/Sn co-doping on the thermal stability and electrical transport properties of the obtained samples were investigated. All the prepared samples exhibit p-type conduction, and carrier concentration varies from 4.71 × 1019 cm−3 to 10.44 × 1019 cm−3, while carrier mobility changes from 34.2 cm2 V−1 s−1 to 68.9 cm2 V−1 s−1 at room temperature. Structure analysis indicates that all samples are β-Zn4Sb3 with space group \( R\bar{3}c\). Thermal analysis results show that the Ga/Sn co-doped samples possess an excellent thermal stability. The results of crystal compositions indicate that both Ga and Sn atoms tend to replace Zn atoms, and the electrical transport properties of the samples were optimized by co-doping Ga and Sn. Meanwhile, the calculated values of the carrier effective mass, band gap and relaxation time agree with the result obtained from a band structure calculation. Consequently, the sample with Ga initial content x = 0.5 possesses excellent electrical properties, which obtains a maximal power factor of 1.56 × 10−3 W m−1 K−2 at 450 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. DiSalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  3. X. Shi and L. Chen, Nat. Mater. 15, 691 (2016).

    Article  Google Scholar 

  4. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, G. Mercouri, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  5. B.C. Chakoumakos, B.C. Sale, and D.G. Mandrus, J. Alloys Compd. 322, 127 (2001).

    Article  Google Scholar 

  6. M. Hokazono, H. Anno, and N. Toshima, J. Electron. Mater. 43, 2196 (2014).

    Article  Google Scholar 

  7. D.M. Rowe, Thermoelectric Handbook: Macro to Nano (Boca Raton: CRC, 2006), p. 27-1.

    Google Scholar 

  8. Y. Wu, J. Nylén, C. Naseyowma, N. Newman, F.J. Garcia-Garcia, and U. Häussermann, Chem. Mater. 21, 151 (2008).

    Article  Google Scholar 

  9. E.S. Toberer, P. Rauwel, S. Gariel, J. Taftø, and G.J. Snyder, J. Mater. Chem. 20, 9877 (2010).

    Article  Google Scholar 

  10. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, J. Nat. Mater. 3, 458 (2004).

    Article  Google Scholar 

  11. T. Caillat, J.P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  Google Scholar 

  12. S.Y. Wang, X.Y. She, G. Zheng, F. Fu, H. Li, and X.F. Tang, J. Electron. Mater. 41, 1091 (2012).

    Article  Google Scholar 

  13. X.X. Shai, S.K. Deng, D.Y. Meng, L.X. Shen, and D.C. Li, J. Phys. B Condens. Matter. 452, 148 (2014).

    Article  Google Scholar 

  14. F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, C. Gatti, and B.B. Iversen, J. Chem. Eur. 10, 3861 (2004).

    Article  Google Scholar 

  15. J. Nylén, S. Lidin, M. Andersson, H.X. Liu, N. Newman, and U. Häussermann, J. Solid State Chem. 180, 2603 (2007).

    Article  Google Scholar 

  16. Y. Mozharivskyj, Y. Janssen, J.L. Harringa, A. Kracher, A.O. Tsokol, and G. Miller, J. Chem. Mater. 18, 822 (2006).

    Article  Google Scholar 

  17. L.T. Zhang, M. Tsutsui, K. Ito, and M. Yamaguchi, J. Alloys Compd. 358, 252 (2003).

    Article  Google Scholar 

  18. W.B. Chen and J.B. Li, J. Appl. Phys. Lett. 98, 241901 (2011).

    Article  Google Scholar 

  19. S.Y. Wang, H. Li, D.K. Qi, W.J. Xie, and X.F. Tang, J. Acta. Mater. 59, 4805 (2011).

    Article  Google Scholar 

  20. H.X. Liu, S.P. Deng, D.C. Li, L.X. Shen, F. Cheng, J.S. Wang, and S.K. Deng, J. Phys. B Condens. Matter. 500, 9 (2016).

    Article  Google Scholar 

  21. X.X. Shai, S.K. Deng, L.X. Shen, D.Y. Meng, D.C. Li, Y.J. Zhang, and X.Y. Jiang, Phys. Status Solidi B 252, 795 (2015).

    Article  Google Scholar 

  22. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  Google Scholar 

  23. G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam: CRC, 1999).

    Google Scholar 

  24. H.M. Ledbetter, J. Appl. Phys. 44, 1451–1454 (1973).

    Article  Google Scholar 

  25. L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Berlin: Springer, 2007).

    Google Scholar 

  26. P. Balasubramanian, M. Battabyal, D. Sivaprahasam, and R. Gopalan, J. Phys. D Appl. Phys. 50, 015602 (2016).

    Article  Google Scholar 

  27. G. Nakamoto, T. Souma, M. Yamaba, and M. Kurisu, Cheminform. 377, 59 (2004).

    Google Scholar 

  28. V. Darakchieva, M. Beckers, M.Y. Xie, L. Hultman, B. Monemar, J.F. Carlin, E. Feltin, M. Gonschorek, and N. Grandjean, J. Appl. Phys. 103, 103513 (2008).

    Article  Google Scholar 

  29. H. Yin, M. Christensen, B.L. Pedersen, E. Nishibori, S. Aoyagi, and B.B. Iversen, J. Electron. Mater. 39, 1957 (2010).

    Article  Google Scholar 

  30. C. Okamura, T. Ueda, and K. Hasezaki, Mater. Trans. 51, 152 (2010).

    Article  Google Scholar 

  31. A.N. Qiu, L.T. Zhang, and J.S. Wu, Phys. Rev. B 81, 035203 (2010).

    Article  Google Scholar 

  32. J.T. Zhao and J.D. Corbett, Inorg. Chem. 33, 5721 (1994).

    Article  Google Scholar 

  33. S. Wang, X. Tan, G. Tan, X. She, W. Liu, H. Li, H. Liu, and X.J. Tang, Mater. Chem. 22, 13977 (2012).

    Article  Google Scholar 

  34. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  Google Scholar 

  35. A.N. Qiu, L.T. Zhang, and J.S. Wu, Phys. Rev. B Condens. Matter. 81, 1718 (2010).

    Article  Google Scholar 

  36. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105–114 (2008).

    Article  Google Scholar 

  37. M. Cutler, J.F. Leavy, and R.L. Fitzpatrick, Phys. Rev. 133, A1143 (1964).

    Article  Google Scholar 

  38. Y.X. Chen, B.L. Du, Y. Saiga, K. Kajisa, and T. Takabatake, J. Phys. D Appl. Phys. 46, 205302 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. M. J. Yang for EPMA measurement at Wuhan University of Technology. This work was supported by National Nature Science Foundation of China (Grant No. 51262032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Tang, Y., Li, D. et al. Thermal Stability and Electrical Transport Properties of Single-Crystalline β-Zn4Sb3 Co-doped by Ga/Sn. J. Electron. Mater. 46, 6804–6810 (2017). https://doi.org/10.1007/s11664-017-5747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5747-7

Keywords

Navigation