Skip to main content
Log in

Effects of Substrate Temperature on Structural and Optical Properties of Spray-Pyrolyzed Cu(Ga0.3In0.7)Se2 Thin Films on Polyimide Plastic Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Chalcopyrite copper indium gallium diselenide Cu(Ga0.3In0.7)Se2 films have been deposited on polyimide (PI) plastic substrate by chemical spray pyrolysis using different substrate temperatures in the range from 350°C to 395°C. The influence of substrate temperature on the structural and optical properties of the CIGS films was studied. High-resolution x-ray diffraction results revealed that the films exhibited chalcopyrite-type structure. The crystallite size of the films increased with increasing substrate temperature, as did their root-mean-square surface roughness. Optical transmission measurements by ultraviolet–visible (UV–Vis) spectrophotometer showed that the optical bandgap decreased from 1.28 eV to 1.16 eV as the substrate temperature was increased. This variation of the crystallite size and energy bandgap with substrate temperature makes such films a promising candidate for application in optoelectronic devices such as photoconductors and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Hillhouse and M.C. Beard, Curr. Opin. Colloid Interface Sci. 14, 245 (2009).

    Article  Google Scholar 

  2. J.E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984).

    Article  Google Scholar 

  3. M.G. Faraj, K. Ibrahim, and A. Salhin, Mater. Sci. Semicond. Proc. 15, 206 (2012).

    Article  Google Scholar 

  4. M.L. Chenene and V. Alberts, J. Phys. D Appl. Phys. 36, 56 (2003).

    Article  Google Scholar 

  5. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, Phys. Status Solidi A 203, 2593 (2006).

    Article  Google Scholar 

  6. R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi, and J.R. Sites, Thin Solid Films 361–362, 396 (2000).

    Article  Google Scholar 

  7. A. Bouloufa, K. Djessas, and D. Todorovic, Mater. Sci. Semicond. Proc. 12, 82 (2009).

    Article  Google Scholar 

  8. J. Piekoszewski, J.J. Loferski, R. Beaulieu, J. Beall, B. Roessler, and J. Shewchun, Sol. Energy Mater. 2, 363 (1980).

    Article  Google Scholar 

  9. M. Venkatachalam, M.D. Kannan, N. Muthukumarasamy, S. Prasanna, S. Jayakumar, R. Balasundaraprabhu, and M. Saroja, Sol. Energy 83, 1652 (2009).

    Article  Google Scholar 

  10. S. Shirakata, Y. Kannaka, H. Hasegawa, T. Kariya, and S. Isomura, Jpn. J. Appl. Phys. 38, 4997 (1999).

    Article  Google Scholar 

  11. S. Kumar, T.P. Sharma, M. Zulfequar, and M. Husain, Phys. B: Condens. Matter 325, 8 (2003).

    Article  Google Scholar 

  12. H.H. Afifi, S.A. Mahmoud, and A. Ashour, Thin Solid Films 263, 248 (1995).

    Article  Google Scholar 

  13. B.J. Babu, S. Velumani, B.J. Simonds, R.K. Ahrenkiel, A. Kassiba, and R. Asomoza, Mater. Sci. Semicond. Proc. 37, 37 (2015).

    Article  Google Scholar 

  14. B.J. Brown and C.W. Bates Jr., Thin Solid Films 188, 301 (1990).

    Article  Google Scholar 

  15. B.J. Babu, S. Velumani, A. Kassiba, R. Asomoza, J.A. Chavez-Carvayar, and J. Yi, Mater. Chem. Phys. 162, 59 (2015).

    Article  Google Scholar 

  16. M.Z. Pakhuruddin, K. Ibrahim, and A. Abdul Aziz, Optoelectron. Adv. Mater 7, 377 (2013).

    Google Scholar 

  17. M.Z. Pakhuruddin, K. Ibrahim, and A. Abdul Aziz, Adv. Mater. Res. 620, 474 (2013).

    Article  Google Scholar 

  18. B. Grzeta-Plenkovic, S. Popovic, B. Celustka, and B. Santic, J. Appl. Crystallogr. 13, 311 (1980).

    Article  Google Scholar 

  19. L.S. Birks and H. Friedman, J. Appl. Phys. 17, 687 (1946).

    Article  Google Scholar 

  20. D. Bhattacharyya, S. Chaudhuri, and A.K. Pal, Mater. Chem. Phys. 40, 44 (1995).

    Article  Google Scholar 

  21. S.Z. Abbas, A.A. Aboud, M. Irfan, and S. Alam, IOP Conf. Ser. Mater. Sci. Eng. 60, 012058 (2013).

    Article  Google Scholar 

  22. M.G. Faraj and H.D. Omar, Aro Sci. J. Koya Univ. 2, 11 (2014).

    Google Scholar 

  23. F.-J. Haug, Z.S. Geller, H. Zogg, A.N. Tiwari, and C. Vignali, J. Vac. Sci. Technol. A 19, 171 (2001).

    Article  Google Scholar 

  24. J. Tauc, Amorphous and Liquid Semiconductors (New York: Springer, 1974).

    Book  Google Scholar 

  25. B. Pamplin and R.S. Feigelson, Thin Solid Films 60, 141 (1979).

    Article  Google Scholar 

  26. Y. Vijayakumar, K.N. Reddy, A.V. Moholkar, and M.V.R. Reddy, Mater. Technol. 49, 371 (2015).

    Google Scholar 

Download references

Acknowledgements

M.G.F. thanks Koya University and Erasmus Mundus Marhaba program for permission to carry out research activities abroad. P.T. thanks MINECO for Project MAT2016-80266R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Faraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraj, M.G., Pakhuruddin, M.Z. & Taboada, P. Effects of Substrate Temperature on Structural and Optical Properties of Spray-Pyrolyzed Cu(Ga0.3In0.7)Se2 Thin Films on Polyimide Plastic Substrate. J. Electron. Mater. 46, 6745–6749 (2017). https://doi.org/10.1007/s11664-017-5746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5746-8

Keywords

Navigation