Skip to main content

Advertisement

Log in

Optimization of the Photoanode of CdS Quantum Dot-Sensitized Solar Cells Using Light-Scattering TiO2 Hollow Spheres

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CdS quantum dot-sensitized solar cells (QDSCs) have been fabricated and their photoanode optimized by altering the thickness of the photoelectrode and CdS deposition conditions and applying a ZnS electron-blocking layer and TiO2 hollow spheres. Hydrothermally grown TiO2 nanocrystals (NCs) with dominant size of 20 nm were deposited as a sublayer in the photoanode with thickness in the range from 5 μm to 10 μm using a successive ionic layer adsorption and reaction (SILAR) method. The number of deposition cycles was altered over a wide range to obtain optimized sensitization. Photoanode thickness and number of CdS sensitization cycles around the optimum values were selected and used for ZnS deposition. ZnS overlayers were also deposited on the surface of the photoanodes using different numbers of cycles of the SILAR process. The best QDSC with the optimized photoelectrode demonstrated a 153% increase in efficiency compared with a similar cell with ZnS-free photoanode. Such bilayer photoelectrodes were also fabricated with different thicknesses of TiO2 sublayers and one overlayer of TiO2 hollow spheres (HSs) with external diameter of 500 nm fabricated by liquid-phase deposition with carbon spheres as template. The optimization was performed by changing the photoanode thickness using a wide range of CdS sensitizing cycles. The maximum energy conversion efficiency was increased by about 77% compared with a similar cell with HS-free photoelectrode. The reason was considered to be the longer path length of the incident light inside the photoanode and greater light absorption. A ZnS blocking layer was overcoated on the surface of the bilayer photoanode with optimized thickness. The number of CdS sensitization cycles was also changed around the optimized value to obtain the best QDSC performance. The number of ZnS deposition cycles was also altered in a wide range for optimization of the photovoltaic performance. It was shown that the maximum efficiency was increased by about 55% compared with a similar QDSC with ZnS-free bilayer photoanode. The final improvement was carried out by applying methanol-based Cd precursor solution in the SILAR deposition process. The best photoanodes from the previous stages were selected and used in this sensitizing process. Besides, nanocrystalline TiO2 sublayers with different thicknesses were applied for further optimization. The results revealed that maximum power conversion efficiency of 3.7% was achieved as a result of such improvement, for a QDSC with optimized double-layer photoanode including TiO2 HSs and NCs and ZnS blocking layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Zaban, O.I. Mićić, B. Gregg, and A. Nozik, Langmuir 14, 3153 (1998).

    Article  Google Scholar 

  2. A. Nozik, Physica E 14, 115 (2002).

    Article  Google Scholar 

  3. M. Barea, M. Shalom, S. Gimenez, I. Hod, I. Mora-Sero, A. Zaban, and J. Bisquert, J. Am. Chem. Soc 132, 6834 (2010).

    Article  Google Scholar 

  4. I. Mora-Sero and J. Bisquert, J. Phys. Chem. Lett. 1, 3046 (2010).

    Article  Google Scholar 

  5. H.K. Jun, M.A. Careem, and A.K. Arof, Renew. Sustain. Energy Rev. 22, 148 (2013).

    Article  Google Scholar 

  6. P.V. Kamat, J. Phys. Chem. 112, 18737 (2008).

    Google Scholar 

  7. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, and K. Sopian, Renew. Sustain. Energy Rev. 37, 397 (2014).

    Article  Google Scholar 

  8. M.A. Halim, Nanomaterials 3, 22 (2013).

    Article  Google Scholar 

  9. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  10. M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev 4, 145 (2003).

    Article  Google Scholar 

  11. M. Grätzel, J. Photochem. Photobiol. A: Chem. 164, 3 (2004).

    Article  Google Scholar 

  12. A. Nozik, Rev. Phys. Chem. 52, 193 (2001).

    Article  Google Scholar 

  13. A.G. Kontos, V. Likodimos, E. Vassalou, I. Kapogianni, Y. Raptis, C. Raptis, and P. Falaras, Nanoscale Res. Lett. 6, 266 (2011).

    Article  Google Scholar 

  14. B. Qin, H. Chen, H. Liang, L. Fu, X. Liu, X. Qiu, S. Liu, R. Song, and Z.Y. Tang, J. Am. Chem. Soc. 132, 2886 (2010).

    Article  Google Scholar 

  15. M.C. Hanna and A. Nozik, J. Appl. Phys. 100, 74 (2006).

    Article  Google Scholar 

  16. J. Tian and G. Cao, Nano Rev. 4, 22578 (2013).

    Article  Google Scholar 

  17. K. Prabakar, H. Seo, M. Son, and H. Kim, Mater. Chem. Phys. 117, 26 (2009).

    Article  Google Scholar 

  18. J. Kim, H. Choi, Ch. Nahm, J. Moon, Ch. Kim, S. Nam, D. Jung, and B. Park, J. Power Sources 196, 10526 (2011).

    Article  Google Scholar 

  19. V. González-Pedro, C. Sima, G. Marzari, P. Boix, S. Giménez, Q. Shen, T. Dittrich, and I. Mora-Seró, Phys. Chem. Chem. Phys. 15, 13835 (2013).

    Article  Google Scholar 

  20. R. Gakhar, Y.R. Smith, M. Misra, and D. Chidambarama, Appl. Surf. Sci. 355, 1279 (2015).

    Article  Google Scholar 

  21. G. Wang, H. Wei, Y. Luo, H. Wu, D. Li, X. Zhong, and Q. Meng, J. Power Sources 302, 266 (2016).

    Article  Google Scholar 

  22. Y. Xu, W. Wu, H. Rao, H. Chen, D. Kuangn, and Ch. Su, Nano Energy 15, 621 (2015).

    Article  Google Scholar 

  23. X. Xu, G. Jiang, Q. Wan, J. Shi, G. Xu, and L. Miao, Mater. Chem. Phys. 136, 1060 (2012).

    Article  Google Scholar 

  24. S. Kim, C. Justin Raj, and H. Kim, Electron. Mater. Lett. 10, 1137 (2014).

    Article  Google Scholar 

  25. H. Dong, D. Wu, F. Zhu, F. Wang, Sh. Zhu, Q. Li, and D. Xu, Sol. Energy Mater. Sol. Cells 133, 201 (2015).

    Article  Google Scholar 

  26. Y. Xie, Thin Solid Films 598, 115 (2016).

    Article  Google Scholar 

  27. W. Li, J. Yang, Q. Jiang, Y. Luo, Y. Hou, Sh. Zhou, Y. Xiao, L. Fu, and Zh. Zhou, J. Power Sources 307, 690 (2016).

    Article  Google Scholar 

  28. F. Huang, J. Hou, Q. Zhang, Y. Wang, R.C. Massé, Sh. Peng, H. Wang, J. Liu, and G. Cao, Nano Energy 26, 114 (2016).

    Article  Google Scholar 

  29. N. McElroy, R.C. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P.O. Brien, and D.J. Binks, Thin Solid Films 560, 65 (2014).

    Article  Google Scholar 

  30. Y. Chen, Q. Tao, W. Fu, and H. Yang, Electrochim. Acta 173, 812 (2015).

    Article  Google Scholar 

  31. X. Song, M. Wang, Y. Shi, J. Deng, Zh. Yang, and X. Yao, Electrochim. Acta 81, 260 (2012).

    Article  Google Scholar 

  32. I. Liu, Ch Chang, H. Teng, and Y. Lee, ASC Appl. Mater. Interfaces 6, 19378 (2014).

    Article  Google Scholar 

  33. Ch. Shen, H. Tong, W. Gao, Sh. Yuan, G. Chen, and S. Yang, J. Alloys Compd. 644, 205 (2015).

    Article  Google Scholar 

  34. C. Justin Raj, S.N. Karthick, S. Park, K.V. Hemalatha, S.K. Kim, K. Prabakar, and H. Kim, J. Power Sources 248, 439 (2014).

    Article  Google Scholar 

  35. M. Venkata-Haritha, Ch. Thulasi-Varma, S.K. Kim, and H. Kim, J. Photochem. Photobiol. A 315, 34 (2016).

    Article  Google Scholar 

  36. Zh. Li, L. Yu, Y. Liu, and Sh. Sun, Electrochim. Acta 153, 200 (2015).

    Article  Google Scholar 

  37. N. Firoozi, H. Dehghani, and M. Afrooz, J. Power Sources 278, 98 (2015).

    Article  Google Scholar 

  38. H. Hua, H. Shen, C. Cui, D. Liang, P. Li, Sh. Xu, and W. Tan, J. Alloys Compd. 560, 1 (2013).

    Article  Google Scholar 

  39. X. Song, M. Wang, T. Xing, J. Deng, J. Ding, Zh. Yang, and X. Zhang, J. Power Sources 253, 17 (2014).

    Article  Google Scholar 

  40. A. Nikolakopoulou, D. Raptis, V. Dracopoulos, L. Sygellou, K. Andrikopoulos, and P. Lianos, J. Power Sources 278, 404 (2015).

    Article  Google Scholar 

  41. Zh. Huo, L. Tao, Sh. Wang, J. Wei, J. Zhu, W. Dong, F. Liu, Sh. Chen, B. Zhang, and S. Dai, J. Power Sources 284, 582 (2015).

    Article  Google Scholar 

  42. H. Chen, L. Lin, X. Yu, K. Qiu, X. Lu, D. Kuang, and C. Su, Electrochim. Acta 92, 117 (2013).

    Article  Google Scholar 

  43. M. Eskandari, V. Ahmadi, and R. Ghahary, Electrochim. Acta 151, 393 (2015).

    Article  Google Scholar 

  44. K. Meng, P.K. Surolia, O. Byrne, and K. Ravindranathan, J. Power Sources 248, 218 (2014).

    Article  Google Scholar 

  45. G.S. Selopal, I. Concina, R. Milan, M. Natile, G. Sberveglieri, and A. Vomiero, Nano Energy 6, 200 (2014).

    Article  Google Scholar 

  46. H.K. Jun, M.A. Careem, and A.K. Arof, Nanoscale Res. Lett. 9, 69 (2014).

    Article  Google Scholar 

  47. H. Choi, Ch Nahm, J. Kim, Ch. Kim, S. Kang, T. Hwang, and B. Park, Curr. Appl. Phys 13, 2 (2013).

    Article  Google Scholar 

  48. S. Son, S. Hwang, Ch. Kim, J. Yun, and J. Jang, ACS Appl. Mater. Interfaces 5, 4815 (2013).

    Article  Google Scholar 

  49. Ch. Kim, H. Choi, J. Kim, S. Lee, J. Kim, W. Lee, T. Hwang, S. Kang, T. Moon, and B. Park, Nanoscale Res. Lett. 9, 295 (2014).

    Article  Google Scholar 

  50. H.Y. Chen, D.B. Kuang, and C.Y. Su, J. Mater. Chem. 22, 15475 (2012).

    Article  Google Scholar 

  51. Y.H. Ao, J. Xu, D.G. Fu, and C.W. Yuan, Catal. Commun. 9, 2574 (2008).

    Article  Google Scholar 

  52. D.H. Chen, F.Z. Huang, Y.B. Cheng, and R.A. Caruso, Adv. Mater. 21, 2206 (2009).

    Article  Google Scholar 

  53. L.J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91, 023113 (2007).

    Article  Google Scholar 

  54. C. Cui, Y. Jiahuan, Zh. Bingqing, L. Haihua Hu, Y. Ni, M. Xu, L. Xu, and X. Li, Electrochim. Acta 173, 551 (2015).

    Article  Google Scholar 

  55. X. Lai, J. Halpert, and D. Wang, Energy Environ. Sci. 5, 5604 (2012).

    Article  Google Scholar 

  56. Y. Huang, J. Chen, W. Zou, L. Zhang, L. Hu, M. He, L. Gu, J. Denga, and X. Xing, Dalton Trans. 45, 1160 (2016).

    Article  Google Scholar 

  57. H. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, J. Alloys Compd. 560, 1 (2013).

    Article  Google Scholar 

  58. D. Wu, J. He, Sh. Zhang, K. Cao, Zh. Gao, F. Xu, and K. Jiang, J. Power Sources 282, 202 (2015).

    Article  Google Scholar 

  59. A. Badawi, N. Al-Hosiny, and S. Abdallah, Superlattices Microstruct. 81, 88 (2015).

    Article  Google Scholar 

  60. Sh. Wang, W. Dong, X. Fang, S. Wu, R. Tao, Z. Deng, J. Shao, L. Hu, and J. Zhu, J. Power Sources 273, 645 (2015).

    Article  Google Scholar 

  61. Y. Zhu, R. Wang, W. Zhang, and H. Ge, Appl. Surf. Sci. 315, 149 (2014).

    Article  Google Scholar 

  62. M. Marandi, S. Feshki, M. Naeimi Sani Sabet, Z. Anajafia, and N. Taghavinia, RSC Adv. 4, 58064 (2014).

    Article  Google Scholar 

  63. J. Langford and A. Wilson, J. Appl. Crystallogr. 11, 102 (1978).

    Article  Google Scholar 

  64. Y. Chen, Q. Tao, W. Fu, H. Yanga, X. Zhou, Y. Zhang, Sh Su, and P. Wang, Electrochim. Acta 118, 176 (2014).

    Article  Google Scholar 

  65. Ch. Liu, L. Mu, J. Jia, X. Zhou, and Y. Lin, Electrochim. Acta 111, 179 (2013).

    Article  Google Scholar 

  66. Y. Shengyuan, A.S. Nair, Zh Peining, and S. Ramakrishna, Mater. Lett. 76, 43 (2012).

    Article  Google Scholar 

  67. M.H. Yeh, L.Y. Lin, Ch.P. Lee, Ch.Y. Chou, K.W. Tsai, J.T. Lin, and K.Ch. Ho, J. Power Sources 237, 141 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Marandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marandi, M., Rahmani, E. & Ahangarani Farahani, F. Optimization of the Photoanode of CdS Quantum Dot-Sensitized Solar Cells Using Light-Scattering TiO2 Hollow Spheres. J. Electron. Mater. 46, 6769–6783 (2017). https://doi.org/10.1007/s11664-017-5719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5719-y

Keywords

Navigation