Skip to main content

Advertisement

Log in

Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (∼1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Owens and A. Peacock, Nucl. Instr. Methods A 531, 18 (2004).

    Article  Google Scholar 

  2. F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, Meas. Sci. Technol. 19, 102011 (2008).

    Article  Google Scholar 

  3. E.V. Kalinina, A.M. Ivanov, and N.B. Strokan, Tech. Phys. Lett. 34, 210 (2008).

    Article  Google Scholar 

  4. F.H. Ruddy and J.G. Seidel, Nucl. Instr. Methods B 263, 163 (2007).

    Article  Google Scholar 

  5. S. Seshadri, A.R. Dulloo, F.H. Ruddy, J.G. Seidel, and L.B. Rowland, IEEE Trans. Electr. Dev. 46, 567 (1999).

    Article  Google Scholar 

  6. G. Bertuccio and R. Casiraghi, IEEE Trans. Nucl. Sci. 50, 175 (2003).

    Article  Google Scholar 

  7. F. Nava, E. Vittone, P. Vanni, P.G. Fuochi, and C. Lanzieri, Nucl. Instr. Methods A 514, 126 (2003).

    Article  Google Scholar 

  8. B. Zat’ko, F. Bubecky, A. Sagatova, and L. Ryc, J. Instrum. 10, C04009 (2015).

    Article  Google Scholar 

  9. Y.B. Gurov, S.V. Rozov, V.G. Sandukovsky, E.A. Yakushev, L. Hrubcin, and B. Zat’ko, Instrum. Exp. Tech. 58, 22 (2015).

    Article  Google Scholar 

  10. L. Liu, J.L. Liu, L. Chen, Z.B. Zhang, P. Jin, J.L. Ruan, G. Chen, A. Liu, S. Bai, and X.P. Ouyang, Diam. Rel. Mater. (2016). doi:10.1016/j.diamond.2016.09.011.

    Google Scholar 

  11. M. Napoli, F. Giacoppo, G. Raciti, and E. Rapisarda, Nucl. Instr. Methods A 608, 80 (2009).

    Article  Google Scholar 

  12. G. Bertuccio, R. Casiraghi, A. Cetronio, C. Lanzieri, and F. Nava, Nucl. Instr. Methods A 522, 413 (2004).

    Article  Google Scholar 

  13. S.K. Chauduri, K.J. Zavalla, and K.C. Mandal, Nucl. Instr. Methods B 728, 97 (2013).

    Article  Google Scholar 

  14. S. Sciortino, F. Harties, S. Lagomarsino, F. Nava, M. Brianzi, V. Cindro, C. Lanzieri, and P. Vanni, Nucl. Instr. Methods A 552, 138 (2005).

    Article  Google Scholar 

  15. G. Raciti, M. Napoli, F. Giacoppo, E. Rapisarda, and C. Sfienti, Nucl. Phys. A 834, 784 (2010).

    Article  Google Scholar 

  16. P. Musumeci, M. Cutroneo, L. Torrisi, A. Velyhan, M. Zimbone, and L. Calcagno, Phys. Scr. T161, 014021 (2014).

    Article  Google Scholar 

  17. L. Torrisi, M. Cutroneo, G. Ceccio, A. Cannavò, D. Batani, G. Boutoux, K. Jakubowska, and J.E. Ducret, Phys. Plasm. 23, 043102 (2016).

    Article  Google Scholar 

  18. A. Sciuto, L. Torrisi, A. Cannavo, G. Ceccio, P. Musumeci, M. Mazzillo, and L. Calcagno, Vacuum 131, 170 (2016).

    Article  Google Scholar 

  19. F.H. Ruddy, J.G. Seidel, H. Choen, A.R. Dulloo, and IEEE Trans, Nucl. Sci. 53, 1713 (2006).

    Article  Google Scholar 

  20. L. Torrisi, S. Gammino, L. Andò, and L. Laska, J. Appl. Phys. 91, 4685 (2002).

    Article  Google Scholar 

  21. A. Itoh, T. Kimono, and H. Matsunami, IEEE Electr. Dev. Lett. 17, 139 (1996).

    Article  Google Scholar 

  22. L. Calcagno, A. Ruggiero, F. Roccaforte, and F. La Via, J. Appl. Phys. 98, 0237131 (2005).

    Article  Google Scholar 

  23. S.M. Sze, Semiconductor Devices Physics and Technology (New York: Willey, 1985).

    Google Scholar 

  24. CXRO, X-Ray Interactions With Matter, Actual website (2017) http://henke.lbl.gov/optical_constants/.

  25. J. Ziegler, SRIM, The Stopping and range of ions in Matter, actual website (2013) http://www.srim.org/.

  26. A. Sciuto, F. Roccaforte, S. Di Franco, V. Raineri, and G. Bonanno, Appl. Phys. Lett. 89, 081111 (2006).

    Article  Google Scholar 

  27. Amptek website. http://amptek.com/products/ mini-x-rays-tube/ (2016).

  28. G.F. Knoll, Radiation Detection and Measurement, 3rd ed. (NewYork: Wiley, 2000), p. 466.

    Google Scholar 

  29. T. Yamaya, R. Asano, H. Endo, and K. Umeda, Nucl. Instr. Methods 159, 181 (1979).

    Article  Google Scholar 

  30. L. Torrisi, A. Sciuto, A. Cannavò, S. Franco, M. Mazzillo, P. Badalà, and L. Calcagno, J. Electr. Mater. (2017). doi:10.1007/s11664-017-5379-y.

    Google Scholar 

  31. J.W. Mayer and E. Rimini, Ion Beam handbook for Materials analysis (New York: Elsevier Science, 1977).

    Google Scholar 

  32. Y. Zhang, B.D. Milbrath, W.J. Weber, M. Elfman, and H.J. Whitlow, Appl. Phys. Lett. 91, 094105 (2007).

    Article  Google Scholar 

  33. L. Torrisi and A. Cannavò, IEEE Trans. Electron Dev. 63, 4445 (2016).

    Article  Google Scholar 

  34. L. Torrisi, Radiat. Eff. Defect Solids 171, 34 (2016).

    Article  Google Scholar 

  35. L. Torrisi, S. Gammino, L. Andò, L. Laska, J. Krasa, K. Rohlena, J. Ullschmied, J. Wolowski, J. Badziak, and P. Parys, J. Appl. Phys. 99, 083301 (2006).

    Article  Google Scholar 

  36. A. Sciuto, F. Roccaforte, S. Franco, V. Ranieri, S.F. Liotta, S. Billotta, G. Bonanno, and M. Belluso, Mater. Sci. Forum 556, 945 (2007).

    Article  Google Scholar 

  37. H. Shuoben, P. Hellström, C.M. Zetterling, and M. östling, IEEE Electr. Dev. Lett. 37, 1594 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the INFN-LNS of Catania (Italy) for the useful support given using the low intensity Nd:YAG laser and the PALS Laboratory in Prague (Czech Republic) for the facility given by the LaserLab-Europe Project N. Pals 1823-Prof. L. Torrisi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Torrisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciuto, A., Torrisi, L., Cannavò, A. et al. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations. J. Electron. Mater. 46, 6403–6410 (2017). https://doi.org/10.1007/s11664-017-5675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5675-6

Keywords

Navigation